STOICHIOMETRY

BASIC DEFINITIONS OF ATOMIC MASS

(i) Relative Atomic Mass: It is the ratio of the mass of 1 atom of a substance and 1/12 of mass of 1 atom of C^{12} isotope. For atoms this is done by expressing mass of one atom with respect to a fixed standard. Dalton used hydrogen as the standard $(H=1)$. Later on oxygen $(\mathrm{O}=16)$ replaced hydrogen as the reference. C-12 ISOTOPE OF CARBON IS LATEST CHOSEN STANDARD SINCE 1961.
Therefore relative atomic mass is given as
Re lative atomic mass $($ RAM $)=\frac{\text { mass of one atom of an element }}{\frac{1}{12} \times \text { mass of oneC }{ }^{12} \text { atom }}$

On Hydrogen scale :

Relative atomic mass $($ RAM $)=\frac{\text { mass of one atom of the element }}{\text { mass of oneHatom }}$

Oxygen scale :

Re lative atomic mass $($ RAM $)=\frac{\text { mass of one atom of the element }}{\frac{1}{16} \times \text { mass of one } O-16 \text { atom }}$
(ii) Atomic Mass Unit (Or amu): The atomic mass unit (amu) is equal to one twelfth $\left(\frac{1}{12}\right)$ of the mass of one atom of carbon-12 isotope.
$\therefore \quad 1 \mathrm{amu}=\frac{1}{12} \times$ mass of one $\mathrm{C}-12$ atom
\square mass of one nucleon in $\mathrm{C}-12$ atom
$=1.66 \times 10^{-24} \mathrm{gm}$ or $1.66 \times 10^{-27} \mathrm{~kg}$
Today, 'amu' has been replaced by ' u ' which is known as unified mass.
(iii) Atomic Mass: It is the mass of 1 atom of a substance it is expressed in ' u ' Atomic mass $=$ RAM $\times 1 \mathrm{u}$
Note: Relative atomic mass is nothing but the number of nucleons present in the atom
(iv) Gram Atomic Mass: The atomic mass of an element expressed in gram is called gram atomic mass of the element.
For example : Atomic mass of ' O ' atom = mass of one ' O ' atom $=16 \mathrm{u}$
gram atomic mass $=$ mass of 6.02×10^{23} ' O ' atoms

$$
\begin{aligned}
& =16 \mathrm{u} \times 6.02 \times 10^{23} \\
& =16 \times 1.66 \times 10^{-24} \mathrm{~g} \times 6.02 \times 10^{23}=16 \mathrm{~g}
\end{aligned}
$$

(v) Molecules: It is the smallest particle of matter which has free existence. Molecules can be further divided into its constituents atoms by physical and chemical process.
Element : $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{O}_{3}$ etc.
Compound : $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{3}$ etc.
(vi) Molecular Mass: It is the mass of one molecule
(vii) Gram Molecular Mass: The molecular mass of a substance expressed in gram is called the grammolecular mass of the substance. Or It is also defined as mass of 6.02×10^{23} molecules Or
It is also defined as the mass of one mole molecules. (molar mass)
For example : Molecular mass of O_{2} molecules = mass of one O_{2} molecule

$$
\begin{aligned}
& =2 \times \text { mass of one O atom } \\
& =2 \times 16 \mathrm{amu} \\
& =32 \mathrm{amu} \\
\text { gram molecular mass } & =\text { mass of } 6.02 \times 10^{23} \mathrm{O}_{2} \text { molecules }=32 \mathrm{amu} \times 6.02 \times 10^{23} \\
& =32 \times 1.66 \times 10^{-24} \mathrm{gm} \times 6.02 \times 10^{23}=32 \mathrm{gm}
\end{aligned}
$$

MOLES:

In 1971, the General conference on weights and measures, adopted mole as the seventh basic SI unit of the amount of a substance.
The term 'mole' is a Latin word which means heap or pile. A mole of atom is a collection of atoms whose total weight is equal to the gram atomic weight. As equal number of moles of different elements contain equal number of atoms, it is very easy to express the amount of a substance in terms of moles. Just as a dozen means twelve objects, in the similar fashion, a mole is a collection of a 'definite number' of particles, viz., atoms, molecules, ions or electrons. This 'definite number' is called Avogadro number which is equal to 6.023×10^{23}. Thus, a mole can be defined as, "the amount of a substance containing as many atoms, molecules, ions, electrons or other elementary entities as there are carbon atoms in exactly 12 g of $\mathrm{C}-12$ ".
Nowadays, gram-molecules and gram-atom are termed as a mole of molecules and a mole of atoms respectively, e.g., 1 gram-molecule of chlorine and 1 gram atom of chlorine are expressed as 1 mole of Cl_{2} and 1 mole of Cl respectively.
The number of moles can be calculated by a number of formulae depending upon the data given:

Number of moles of molecules	$=\frac{\text { weight of the substance in } g}{\text { Molar weight of the substance }}$
Number of moles of atoms	$=\frac{\text { weight of the element in } \mathrm{g}}{\text { Molar atomic weight of the element }}$
Number of moles of gas	$=\frac{\text { Volume of the gas }}{\text { Molar volume at the given temperature and pressure }}$

THE LAWS OF CHEMICAL COMBINATIONS

(i) Law of Conservation Of Mass:

In a chemical change total mass remains conserved.
i.e. mass before reaction is always equal to mass after reaction

Example : $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$

$$
\text { Mass before reaction }=2+71=73 \mathrm{gm}
$$

Mass after reaction $=2 \times 36.5=73$
\because mass before reaction $=$ mass after reaction, hence it follows law of conservation of mass.
(ii) Law of Constant or Definite Proportion:

All chemical compounds are found to have constant composition irrespective of their method of preparation or source.
For Example: In water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, hydrogen and oxygen combine in $2: 1$ molar ratio, this ratio remains constant whether it is tap water, river water or sea water or produced by any chemical reaction.
Illustration 1: $\quad 1.80 \mathrm{~g}$ of a certain metal burnt in oxygen gave 3.0 g of its oxide. 1.50 g of the same metal heated in steam gave 2.50 g of its oxide. The law shown by above data.
(A) law of constant composition
(B) law of multiple proportion
(C) law of reciprocal proportion
(D) all

Solution: (A)

In the first sample of oxide,
Weight of metal $=1.80 \mathrm{~g}$
Weight of oxygen $=(3.0-1.80) \mathrm{g}=1.2 \mathrm{~g}$

STOICHIOMETRY

$\therefore \quad \frac{\text { wt of metal }}{\text { wt of oxygen }}=\frac{1.80 \mathrm{~g}}{1.2 \mathrm{~g}}=1.5$
In the second sample of the oxide,
Weight of metal $=1.50 \mathrm{~g}$
Weight of oxygen $=(2.50-1.50) \mathrm{g}=1 \mathrm{~g} \quad \therefore \quad \frac{\text { wt of metal }}{\text { wt of oxygen }}=\frac{1.50 \mathrm{~g}}{1 \mathrm{~g}}=1.5$
Thus, in both samples of the oxide the proportions of the weights of the metal and oxygen afixed. Hence the results follow the law of constant proportion.
(iii) Law of Multiple Proportion:

When one element combines with the other elements to form two or more different compounds, the mass of one element, which combines with a constant mass of the other, bear a simple ratio to one another.
For example, carbon and oxygen react together to form carbon monoxide and carbon dioxide. Here fixed mass of carbon (12gm) reacts with different masses of oxygen ($16 \mathrm{gm} \& 32 \mathrm{gm}$). Hence ratio of masses of oxygen has ratio $16: 32$ or $1: 2$ which proves law of multiple proportion.
Illustration 2: Carbon is found to form two oxides, which contains 42.9% and $\mathbf{2 7 . 3} \%$ of carbon respectively. The law show by above data.
(A) law of constant composition
(B) law of multiple proportion
(C) law of reciprocal proportion
(D) all

Solution: (B)
I: To calculate the percentage composition of carbon and oxygen in each of the two oxides.
First oxide Second oxide
Carbon 42.9% 27.3\% (Given)
Oxygen 57.1\% 72.7\%
II : To calculate the masses of carbon which combine with a fixed mass i.e., one part by mass of oxygen in each of the two oxides.
In the first oxide, 57.1 parts by mass of oxygen combine with carbon $=42.9$ parts.
$\therefore 1$ part by mass of oxygen will combine with carbon $=\frac{42.9}{57.1}=0.751$
In the second oxide 72.7 parts by mass of oxygen combine with carbon $=27.3$ parts
$\therefore 1$ part by mass of oxygen will combine with carbon $=\frac{27.3}{72.7}=0.376$
III : To compare the masses of carbon which combine the same mass of oxygen in both the oxides.
The ratio of the masses of carbon that combine with the same mass of oxygen (1 part) is 0.751 :
0.376 or $2: 1$

Since this is simple whole number ratio, so the above data illustrate the law of multiple proportions.
(iv) Gay Lussac's Law

Gas react or formed in the simple ratio of their volume. Provided all measurement are in the same condition of temperature and pressure.

$$
\underset{1 \mathrm{vol}}{\mathrm{H}_{2}}+\underset{\text { vol }}{\mathrm{Cl}_{2}} \rightarrow \underset{2 \mathrm{vol}}{2 \mathrm{HCl}}
$$

AVOGADRO'S HYPOTHESIS

Equal volume of all gases have equal number of molecules (not atoms) at same temperature and pressure conditions.
Mathematically, for ideal gases, $\mathrm{V} \propto \mathrm{n}$ (Constant $\mathrm{T} \& \mathrm{P}$).
S.T.P. (Standard Temperature and Pressure)

At S.T.P. / N.T.P. condition: \quad Temperature $=0^{\circ} \mathrm{C}$ or 273 K
Pressure $=1 \mathrm{~atm}=760 \mathrm{~mm}$ of Hg
Volume of one mole of an ideal gas = 22.4 litres (experimentally determined)

DALTON'S ATOMIC THEORY

1. Matter is made up of very small indivisible particle called atoms.
2. All the atoms of a given element are identical in all respect i.e. mass, shape, size, etc.
3. Atoms cannot be created or destroyed by any chemical process.
4. Atoms of different elements are different in nature.
5. Atoms combine in a definite proportion to form molecules

PERCENTAGE COMPOSITION

Here we are going to find out the percentage of each element in the compound by knowing the molecular formula of compound.
We know that according to law of definite properties any sample of a pure compound always possess constant ratio with their combining elements.
Percentage mass of an element $=\frac{\text { mass of that element in the compound }}{\text { molar mass of that compound }} \times 100$

EMPIRICAL FORMULA FOR MOLECULAR FORMULA

We have just seen that known the molecular formula of the compound we can calculate percentage composition of the elements. Conversely if we know the percentage composition of the elements initially, we can calculate the relative number of atom of each element in molecules of the compound. This gives as the empirical formula of the compound. Further if the molecular mass is known then the molecular formula can easily be determined.
Thus, the empirical formula of a compound is a chemical formula showing the relative number of atoms in the simplest ratio, the molecular formula gives the actual number of atoms of each element in a molecule. The molecular formula is an integral multiple of the empirical formula.
i.e. molecular formula $=$ empirical formula $\times \mathrm{n}$; where $n=\frac{\text { molecular formula mass }}{\text { empirical formula mass }}$

Illustration 3: Acetylene and benzene both have the empirical formula CH . The molecular masses of acetylene and benzene are 26 and 78 respectively. The molecular formula will be.
(A) $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{2}$
(B) $\mathrm{C}_{7} \mathrm{H}_{7}, \mathrm{C}_{2} \mathrm{H}_{2}$
(C) $\mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{C}_{4} \mathrm{H}_{4}$
(D) $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{6}$

Solution: (A)
I: The empirical formula of the compounds is CH
$\therefore \quad$ Empirical formula mass

$$
=(1 \times 10)+1=13
$$

Molecular mass $=26$
II : To calculate the value of ' n '

$$
\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{26}{13}=2
$$

III : To calculate the molecular formula of the compound.
Molecular formula $=n \times$ (Empirical formula of the compound)

$$
=2 \times \mathrm{CH}=\mathrm{C}_{2} \mathrm{H}_{2}
$$

Thus the molecular formula is $\mathrm{C}_{2} \mathrm{H}_{2}$
Similarly for benzene
To calculate the value of ' n '

$$
\mathrm{n}=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}=\frac{78}{13}=6
$$

thus the molecular formula is $6 \times \mathrm{CH}=\mathrm{C}_{6} \mathrm{H}_{6}$

SIGNIFICANCE OF CHEMICAL EQUATIONS

Let us consider a balanced chemical equation

$\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$

This equation will provide us various quantitative informations:
(i) The molar ratio of reactants, i.e., PbS and $\mathrm{H}_{2} \mathrm{O}_{2}$ in which they react together is 1:4.
(ii) The molar ratio of the two products i.e., PbSO_{4} and $\mathrm{H}_{2} \mathrm{O}$ being formed in the reaction is also 1:4.
(iii) One mole of PbSO_{4} and 4 moles of $\mathrm{H}_{2} \mathrm{O}$ will be formed for each mole of PbS being consumed.

The stoichiometric coefficients of a balanced chemical equation is the molar ratio and not the weight ratio.
One can use the balanced chemical equation for quantitative (gravimetric or volumetric) estimation of reactants and products. But if one does not have the balanced equation, it is very difficult to calculate the amounts of reactants consumed or products being formed.
Illustration 4: Calculate the mass of 90% pure MnO_{2} to produce $35.5 \mathrm{~g}^{\text {of }} \mathrm{Cl}_{2}$ according to the following reaction. $\mathrm{MnO}_{2}+\mathbf{4 H C l} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(A) 4.83 g
(B) 483 g
(C) 48.3 g
(D) 0.483 g

Solution: (C)
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\because 71 \mathrm{~g} \mathrm{Cl}_{2}$ is produced by 87 g of MnO_{2}
$\therefore 35.5 \mathrm{~g} \mathrm{Cl}_{2}$ is produced $=\frac{87 \times 35.5}{712}=43.5 \mathrm{~g}$
90 g pure MnO_{2} is present in 100 g sample
$\therefore 43.5 \mathrm{~g}$ pure $\mathrm{MnO}_{2}=48.3 \mathrm{~g}$

LIMITING REAGENT

The reactions in which more than one reactants are reacting and if they are not present in the same molar ratio as the balanced equation requires, then one has to find out the limiting reagent i.e., the reagent which is completely consumed in the reaction. All quantitative calculations are carried out with the help of limiting reagent only. Now, how to decide the limiting reagent of a reaction? Consider the following example.
Suppose you are given 5 moles of PbS and 18 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ and you have to calculate the maximum amount of PbSO_{4} being produced.
The balanced equation is:

$$
\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}
$$

Initial moles 5 mol 18 mol
Now since 1 mol of PbS reacts completely with 4 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ to produce 1 mol of PbSO_{4}. Therefore, 5 moles of PbS will react with 20 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$. But since moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ is only 18 . So, $\mathrm{H}_{2} \mathrm{O}_{-2}$ will be the reagent, which will be consumed first, and hence $\mathrm{H}_{2} \mathrm{O}_{2}$ is the limiting reagent. If PbS had been the limiting reagent 5 mole of it would have given 5 moles of PbSO_{4} but it is not so. As one can see from the balanced chemical equation that 1 mol of PbSO_{4} is produced from 4 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$. So 18 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ will produce 4.5 moles of PbSO_{4}.
So, one can define limiting reagent in another way,
"The reagent producing the least number of moles of products is the limiting reagent".
Illustration 5: 8 gm of methane is burnt with 4.48L of O_{2} at STP. Find out the volume of CO_{2} gas produced at STP and also the weight of CO_{2} gas.
(A) $22.4 \mathrm{~L}, 44 \mathrm{~g}$
(B) $2.24 \mathrm{~L}, 4.4 \mathrm{~g}$
(C) $1.12 \mathrm{~L}, 22 \mathrm{~g}$
(D) $44.8 \mathrm{~L}, 88 \mathrm{~g}$

Solution: (B)
The balanced chemical equation is

No. of moles of $\mathrm{CH}_{4}=\frac{8}{16}=0.5 \mathrm{~mol}$
No. of moles of $\mathrm{O}_{2}=\frac{4.48 \mathrm{~L}}{22.4 \mathrm{~L}}=0.2 \mathrm{~mol}$
Now since 1 mole of CH_{4} requires 2 mol (i.e. 44.8 L) of O_{2} for complete combustion. But the given moles of O_{2} is only 0.2 mol . So, O_{2} is the limiting reagent.
Again, since 2 moles of O_{2} reacts with 1 mol of CH_{4} to give 22.4 L of CO_{2} at STP.
So 0.2 mole of O_{2} will react with 0.1 mol of CH_{4} to give $2.24 \mathrm{~L}^{2}$ of CO_{2}.
Weight of CO_{2} produced $=0.1 \mathrm{~mol} \times 44$

$$
=4.4 \mathrm{gms}^{\mathrm{of}} \mathrm{CO}_{2}
$$

REACTION IN SOLUTION (CONCENTRATION)

(i) Molarity (M): The no. of moles of solute present in one litre of solution is called the molarity (M).

Molarity $=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litre }}$
or Molarity $=\frac{\text { weight of solute } / \text { molar mass of solute }}{\text { Volume of solution in Litre }}$
So, no. of moles of solute $=$ Volume of solution (in litre) \times Molarity of solution
Illustration 6: 149 gm of potassium chloride (KCl) is dissolved in 10 Lt of an aqueous solution. Determine the molarity of the solution $(\mathrm{K}=39, \mathrm{CI}=35.5)$
(A) 0.3 M
(B) 0.1 M
(C) 0.4 M
(D) 0.2 M

Solution: (D)
Molar mass of $\mathrm{KCI}=39+35.5=74.5 \mathrm{gm}$
\therefore Moles of $\mathrm{KCI}=\frac{149 \mathrm{gm} / \mathrm{mole}}{74.5 \mathrm{gm}}=2$ mole
\therefore Molarity of the solution $=\frac{149 \mathrm{gm} / \mathrm{mole}}{74.5 \mathrm{gm}}=2 \mathrm{~mole}$
(ii) Molality (m): No. of moles of solute present in one kilogram of solvent is known as molality

$$
\text { Molality }(\mathrm{m})=\frac{\text { No. of moles of solute }}{\text { Wt. of solvent }(\text { in } \mathrm{kg})}
$$

Illustration 7: $\mathbf{2 2 5} \mathbf{~ g m}$ of an aqueous solution contains $\mathbf{5} \mathbf{~ g m}$ of urea. What is the concentration of the solution in terms of molality. (Mol. Weight of Urea = 60)
(A) 0.332
(B) 0.221
(C) 0.632
(D) 0.421

Solution: (A)
Mass of urea $=5 \mathrm{gm}$
Molecular mass of urea $=60$
Number of moles of urea $=\frac{5}{60}=0.083$
Mass of solvent $=(255-5)=250 \mathrm{gm}$
Molality of the solution $=\frac{\text { Number of moles of solute }}{\text { Mass of solvent in gram }} \times 1000=\frac{0.083}{250} \times 1000=0.332$
(iii) Normality (\mathbf{N}): No of equivalents of solute present in one litre of the solution is known as Normality (N).

STOICHIOMETRY

$\operatorname{Normality}(\mathrm{N})=\frac{\text { Number of equivalents of solute }}{\text { Volume of solution in litre }}$

$$
=\frac{\text { Mass of solute/equivalent mass of solute }}{\text { Volume of solution in litre }}
$$

No. of equivalent of solute $=$ Volume of solution (in litre) \times normality of solution
No. of milli equivalents of solute $=$ Normality of solution \times Volume of solution in millilitres

Equivalent weight = Molecular weight / n-factor

n-factor:
for an acid = basicity (no. of H^{+}replaced)
for a base = acidity (no. of OH^{-}replaced)
for a redox reagent $=$ no. of moles of electrons lost or gained per mole of compound
Illustration 8: Calculate the normality in $\mathbf{3 . 6 5} \mathbf{~ g}$ of HCI in $\mathbf{2 0 0} \mathbf{~ m l}$ of solution.
(A) 1
(B) 2
(C) 0.5
(D) 0.1

Solution: (C)
Equivalent of $\mathrm{HCl}=\frac{3.65}{36.5}$
Volume of solution $=200 \mathrm{ml}=\frac{200}{1000}$ litre
$\mathrm{N}=\frac{3.65 \times 1000}{36.5 \times 200}=0.5$

GRAVIMETRIC ANALYSIS

Gravimetric analysis is an analytical technique based on the measurements of mass of solid substances and/or volume of gaseous species. Gravimetric analysis is divided into three parts.
(i) Mass-Mass relationship
(ii) Mass-volume relationship
(iii) Volume-volume relationship
(i) Mass-Mass Relationship: It relates the mass of a species (reactant or product) with the mass of another species (reactants or product)
Let us consider a chemical reaction,
$2 \mathrm{NaHCO}_{3}$ (s) $\xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) $+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ (g)
Suppose the mass of NaHCO_{3} being heated is ' a ' g and we want to calculate the weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
being produced by heating of ' a ' g of NaHCO_{3}.
The moles of $\mathrm{NaHCO}_{3}=\frac{\mathrm{a}}{84}$
According to the above balanced equation 2 moles of NaHCO_{3} upon heating gives 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. So,
The no. of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ produced $=\frac{1}{2} \times \frac{\mathrm{a}}{84}$
Thus, Weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ produced $=$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}{ }^{\prime}$ Molecular weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=\frac{1}{2} \times \frac{\mathrm{a}}{84} \times 106=\frac{53 \mathrm{a}}{84} \mathrm{gms}
$$

Illustration 9: By heating 10 g of $\mathrm{CaCO}_{3}, 5.6 \mathrm{~g} \mathrm{CaO}$ is formed. What is the weight of CO_{2} obtained in this reaction?
(A) 2.2 g
(B) 2.3 g
(C) 3.2 g
(D) 4.4 g

Solution: (D)
Molecular weight

$$
\underset{100}{\mathrm{CaCO}_{3}} \rightarrow \underset{56}{\mathrm{CaO}}+\underset{44}{\mathrm{CO}_{2}}
$$

$\because 100 \mathrm{~g} \mathrm{CaCO}_{3}$ gives 56 g CaO and $44 \mathrm{~g} \mathrm{CO}_{2}$
$10 \mathrm{~g} \mathrm{CaCO}_{3}$ gives 5.6 g CaO and $4.4 \mathrm{~g} \mathrm{CO}_{2}$
(ii) Mass-Volume Relationship: It relates the mass of a species (reactant or product) and the volume of a gaseous species (reactant or product) involved in a chemical reaction. Suppose we are provided with ' a ' gms of NaHCO_{3} in a vessel of capacity V L and the vessel is heated, so that NaHCO_{3} decomposes as

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Now, we want to calculate the volume of CO_{2} gas being produced.
Since 2 moles of NaHCO_{3} gives 1 mole of CO_{2} at STP. Thus
So volume of CO_{2} produced $=22.4$ litre at STP.
Illustration 10: Calculate the volume of hydrogen liberated at $27^{\circ} \mathrm{C}$ and 760 mm pressure by treating 1.2 g of magnesium with excess of hydrochloric acid.
(A) 1.238 L
(B) 12.38 L
(C) 2.23 L
(D) 22.3 L

Solution: (A)
The balanced equation is
$\mathrm{Mg}+2 \mathrm{HCl}=\mathrm{MgCl}_{2}+\mathrm{H}_{2}$
1 mole $\quad 1$ mole
$24 \mathrm{~g} \quad 22.4$ litre at NTP
24 g of Mg liberate hydrogen $=22.4$ litre
1.2 g of Mg will liberate hydrogen $=\frac{22.4}{24} \times 1.2=1.12$ litre

Volume of hydrogen under given condition can be calculated by applying $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$\mathrm{P}_{1}=760 \mathrm{~mm} \quad \mathrm{P}_{2}=760 \mathrm{~mm}$
$\mathrm{T}_{1}^{1}=273 \mathrm{~K} \quad \mathrm{~T}_{2}^{2}=(27+273)=300 \mathrm{~K}$
$\mathrm{V}_{-1}=1.12$ litres $\quad \mathrm{V}_{2}=$?
$V_{2}=\frac{760 \times 1.12}{273} \times \frac{300}{760}=1.2308$ litres
(iii) Volume-Volume Relationship: It relates the volume of gaseous species (reactants or products) with the volume of another gaseous species (reactant or product) involved in a chemical reaction.
Illustration 11: What volume of oxygen gas at NTP is necessary for complete combustion of 20 litre of propane measured at $0^{\circ} \mathrm{C}$ and 760 mm . pressure.
(A) 10 L
(B) 100 L
(C) 200 L
(D) 50 L

Solution: (B)
The balanced equation is
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
1 litre of propane requires $=5$ litre of oxygen
20 litre of propane will require $=5 \times 20=100$ litre of oxygen at 760 mm pressure and $0^{\circ} \mathrm{C}$.

CLASSICAL IDEA OF REDOX REACTION

Oxidation and reduction can be classified according to the following :
Oxidation
(i) Addition of oxygen is oxidation.

$$
\begin{aligned}
& \text { e.g. } 2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s}) \\
& \mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})
\end{aligned}
$$

(ii) Removal of hydrogen is oxidation.

STOICHIOMETRY

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(iii) Addition of electronegative part is oxidation.
$\mathrm{Mg}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgF}_{2}(\mathrm{~s})$
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$
$\mathrm{Mg}(\mathrm{s})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{MgS}(\mathrm{s})$
(iv) Removal of electropositive part is oxidation

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq})
$$

To summarize, the term "oxidation" is defined as the addition of oxygen/ electronegative element to a substance or removal of hydrogen/ electropositive element from a substance.

Reduction

(i) Removal of oxygen or electronegative part is reduction.

$$
\begin{aligned}
& 2 \mathrm{HgO}(\mathrm{~s}) \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \\
& 2 \mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeCl}_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq})
\end{aligned}
$$

(ii) Addition of hydrogen or electropositive part is reduction

$$
\begin{aligned}
& \mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}(\mathrm{~g}) \\
& 2 \mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{SnCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+\mathrm{SnC!}_{4}(\mathrm{aq})
\end{aligned}
$$

To summarize, the term "reduction" is defined as the addition of hydrogen / electropositive element to a substance or removal of oxygen / electronegative element from a substance.

MODERN CONCEPT OF OXIDATION AND REDUCTION

(ELECTRON TRANSFER)

(i) Loss of electron is oxidation where as gain of electron is reduction
(ii) Increase in positive oxidation number is oxidation whereas increase in negative oxidation number is reduction
$4 \mathrm{Al}^{0}+3 \mathrm{O}_{2}^{0} \rightarrow 2 \mathrm{Al}_{2}^{3+} \mathrm{O}_{3}^{2-}$
$\mathrm{Zn}^{0}+\mathrm{Cl}_{2}^{0} \rightarrow \mathrm{Zn}^{2+} \mathrm{Cl}_{2}^{1-}$
Since the positive oxidation state of Al and Zn increases i.e. they lose the electron hence they are undergo oxidation, whereas the negative oxidation state of oxygen and chlorine increases i.e. they gain electron hence undergo reduction.
Illustration 12: In the following redox reaction, identify the element that is oxidized, the element that is reduced respectively $\quad \mathrm{I}_{2} \mathrm{O}_{5}+5 \mathrm{CO} \rightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2}$
(A) I, C
(B) C, I
(C) both oxidized
(D) both reduced

Solution: (B)

lodine is reduced from I^{5+} to I^{0} whereas, carbon is oxidized from C^{2+} to C^{4+}

RULES FOR CALCULATION OF OXIDATION NUMBER

Following rules have been arbitrarily adopted to decide oxidation no. of elements on the basis of their periodic properties.

1. In uncombined state or free state, oxidation number of an element is zero.
2. In combined state oxidation no. of
a) F is always -1 .
b) O is -2 . In peroxides it is -1 , in superoxides it is $-1 / 2$. However in $\mathrm{F}_{2} \mathrm{O}$ it is +2 .
c) H is +1 . In ionic hydrides it is -1 (i.e., IA, IIA and IIIA metals).
d) halogens as halide is always -1 .
e) sulphur as sulphide is always -2 .
f) metals is always +ve.
g) alkali metals (i.e., I A group - Li, Na, K, Rb, Cs, Fr) is always +1 .
h) alkaline earth metals (i.e., II A group-Be, Mg, Ca, Sr, Ba, Ra) is always +2.
3. The algebraic sum of the oxidation no. of all the atoms in a compound is equal to zero, e.g.
KMnO_{4}.
Ox. no. of $\mathrm{K}+\mathrm{Ox}$. no. of $\mathrm{Mn}+(\mathrm{Ox}$. no. of O$) \times 4=0$
$(+1)+(+7)+4 \times(-2)=0$
4. The algebraic sum of all the oxidation no. of elements in a radical is equal to the net charge on the radical, e.g., CO_{3}^{-2}.
Oxidation no. of $\mathrm{C}+3 \times($ Oxidation no. of O$)=-2$
$(+4)+3 \times(-2)=-2$
5. Oxidation number can be zero, +ve, -ve (integer or fraction)
6. Maximum oxidation no. of an element is = Group no.
(Except O and F)
Minimum oxidation no. of an element is = Group no. -8
(Except metals)
Redox reactions involve oxidation and reduction both. Oxidation means loss of electrons and reduction means gain of electrons. Thus redox reactions involve electron transfer and the number of electrons lost are same as the number of electrons gained during the reaction. This aspect of redox reaction can serve as the basis of a pattern for balancing redox reactions.

Illustration 13: Find the oxidation number of

S in SO_{4}^{2-} ion; S in HSO_{3}^{-}ion; Pt in $\left(\mathrm{PtCl}_{6}\right)^{2-}$; $\mathbf{M n}$ in $\left(\mathrm{MnO}_{4}\right)^{-}$ion
(A) $4,6,4,7$
(B) $4,4,4,7$
(C) $6,4,4,7$
(D) $6,6,4,7$

Solution: (C)
a) Let the oxidation number of S be x.

We know that Ox . no. of $\mathrm{O}=-2$
So Ox. no of $S+4(O x$. no. O) $=-2$
or $x+4(-2)=-2$
or $x-8=-2$
or $\quad x=+8-2=+6$
The oxidation number of S in ion is +6 .
b) Let the oxidation number of S be x in HSO_{3}^{-}ion.

We know that Ox. no. of $\mathrm{H}=+1$
Oxidation number of $\mathrm{O}=-2$
So Ox. no. of $H+O x$. no. of $S+3(O x$. no. $O)=-1$
$+1+x+3(-2)=-1$
or $+1+x-6=-1$
or $x \quad-\quad 5=-1$
or $\quad x=+5-1=+4$
The oxidation number of S in HSO_{3}^{-}ion is +4 .
c) Let oxidation number of Pt be x .

We know that Ox . no. of $\mathrm{Cl}=-1$
$\begin{array}{lllll}\text { So Ox. no. Pt }+6(\text { Ox. no. } \mathrm{Cl}) & =-2 \\ & \begin{array}{lll}\mathrm{x} & + & 6(-1) \\ \text { or } & \mathrm{x} & -\end{array} 6 & =-2\end{array}$
The oxidation number of Pt in $\left[\mathrm{Pt}(\mathrm{Cl})_{6}\right]^{2-}$ ion is +4 .
d) Let oxidation number of Mn be x .

We know that Ox . no. of $\mathrm{O}=-2$
So Ox.no. $\mathrm{Mn}+4$ (Ox. no. O) $=-1$
$\begin{array}{lll}\mathrm{x} & + & 4(-2) \\ \text { or } & =-1 \\ \mathrm{x} & - & 8\end{array}$

STOICHIOMETRY

or $\quad x=+8-1=+7$

The oxidation number of Mn in $\left[\mathrm{MnO}_{4}\right]^{-}$ion is +7 .
TYPE OF REDOX REACTION
(i) Combination reactions
$\stackrel{0}{\mathrm{C}}(\mathrm{s})+\stackrel{0}{\mathrm{O}_{2}}(\mathrm{~g}) \xrightarrow{\Delta} \stackrel{4+2-}{\mathrm{CO}_{2}}(\mathrm{~g})$
$\stackrel{0}{\mathrm{Mg}}(\mathrm{s})+\stackrel{0}{\mathrm{~N}_{2}}(\mathrm{~g}) \xrightarrow{\Delta} \stackrel{2+}{\mathrm{Mg}_{3} \stackrel{3-}{N}_{2}(\mathrm{~s})}$
(ii) Decomposition reactions
$2 \stackrel{1+1-}{\mathrm{Na}} \mathrm{H}(\mathrm{s}) \xrightarrow{\Delta} \stackrel{0}{\mathrm{~N}} \mathrm{Na}(\mathrm{s})+\stackrel{0}{\mathrm{H}_{2}}$
$1+5+2-\quad 1+1-\quad 0$
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
(iii) Displacement reactions
(a) Metal displacement

$$
\begin{aligned}
& 2+6+2-\quad 0 \quad 0 \quad 2+6+2- \\
& \mathrm{CuSSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSSO}_{4}(\mathrm{aq}) \\
& \stackrel{3+}{\mathrm{Cr}_{2}} \stackrel{2-}{\mathrm{O}}_{3}(\mathrm{~s})+2 \stackrel{0}{\mathrm{Al}}(\mathrm{~s}) \xrightarrow{\Delta} \stackrel{3+}{\mathrm{Al}_{2}} \stackrel{2-}{\mathrm{O}}_{3}(\mathrm{~s})+2 \stackrel{0}{\mathrm{C}} \mathrm{r}(\mathrm{~s})
\end{aligned}
$$

(b) Non metal displacement

(iv) Disproportionation reactions

$\stackrel{0}{\mathrm{P}} 4(\mathrm{~s})+3 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \stackrel{3-}{\mathrm{P}} \mathrm{H}_{3}+3 \stackrel{1+}{\mathrm{H}_{2}} \mathrm{PO}_{2}^{-}(\mathrm{aq})$
$\stackrel{0}{S}_{8}(\mathrm{~s})+12 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 4 \mathrm{~S}^{2-}(\mathrm{aq})+2{\stackrel{2+}{\mathrm{S}_{2}} \mathrm{O}_{3}^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(l)}^{(l)}$
$\stackrel{0}{\mathrm{Cl}}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \stackrel{1+}{\mathrm{ClO}^{-}}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$

BALANCING REDOX REACTION BY OXIDATION NUMBER METHOD

For balancing a redox reaction by oxidation number method, follow the order of steps as listed below (of course, all steps may not be required for balancing some reactions).
i) Find the oxidation numbers of the elements whose oxidation state is being changed.
ii) Balance the number of atoms in both side of the equation of the element whose oxidation number is being changed.
iii) Now, find the increase and decrease in oxidation no.
iv) To equalize the change in oxidation states, multiply the species whose oxidation state is being changed, by a suitable integer.
V) If the coefficient developed are not correct, then change them by inspection (such coefficient changes is required when an element from a compound goes in 2 different compounds, one with the same oxidation state \& the other with changed oxidation state).
vi) Count the charges on both sides of the equation and balance the charges in the equation by adding requisite H^{+}in acidic medium or OH^{-}in basic medium to the required side.
vii) Balance the hydrogen and oxygen by adding the appropriate number of $\mathrm{H}_{2} \mathrm{O}$ molecules on the required side.
Illustration 14: In the equation : $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2}$, the stoichiometric coefficient of
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{I}^{-}, \mathrm{H}^{+}$are respectively
(A) $1,6,14$
(B) 1, 2, 14
(C) 2, 1, 14
(D) $1,6,12$

Solution: (A)
i) Find the oxidation states of atoms undergoing redox change

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{+6 \times 2}+\mathrm{I}^{-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2}^{0}
$$

ii) Balance the number of atoms undergoing redox change.
iii) Find the change in oxidation states and balance the change in oxidation states by multiplying the species with a suitable integer.

$$
\stackrel{+12}{\mathrm{Cr}_{2}} \mathrm{O}_{7}^{2-}+2 \stackrel{-2}{\mathrm{I}^{-}} \longrightarrow 2 \stackrel{+6}{\mathrm{Cr}^{3+}}+\stackrel{0}{\mathrm{I}_{2}}
$$

Change in ox. state $=6$
As the decrease in oxidation state of chromium is 6 and increase in oxidation state of iodine is 2 , so, we will have to multiply $\mathrm{I}^{-} / \mathrm{I}_{2}$ by 3 to equalize the changes in oxidation states.

$$
\mathrm{Cr}_{2}+6 \mathrm{I}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}
$$

iv) Find the total charges on both the sides and also find the difference of charges.
charge on LHS $=-2+6 \times(-1)=-8$
Charge on RHS $=2 \times(+3)=+6$.
Difference in charge $=+6-(-8)=14$
v) Now, as the reaction is taking place in acidic medium, we will have to add the H^{+}ions, to the side falling short in positive charges, so we will add $14 \mathrm{H}^{+}$on LHS to equalize the charges on both sides.

$$
\mathrm{Cr}_{2}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}
$$

vi) To equalize the H and O atoms, add $7 \mathrm{H}_{2} \mathrm{O}$ on RHS

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

Illustration 15: In the equation $\mathrm{Zn}+\mathrm{NO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{ZnO}_{2}^{2-}+\mathrm{NH}_{3}$, the stoichiometry coefficient of
$\mathrm{Zn}, \mathrm{NO}_{3}^{-}, \mathrm{OH}^{-}$are respectively
(A) 4, 2, 7
(B) $4,1,6$
(C) $4,1,7$
(D) $1,6,12$

Solution: (C)
i) Find the oxidation states of atoms undergoing redox changes.
$\stackrel{0}{\mathrm{Zn}}+\mathrm{NO}_{3}^{+5}+\mathrm{OH}^{-} \longrightarrow \stackrel{+2}{\mathrm{Zn}} \mathrm{nO}_{2}^{2-}+\stackrel{-3}{\mathrm{~N}_{3}}$
ii) Find the changes in oxidation states and equalize the species, undergoing redox change, with a suitable integer.
$\stackrel{0}{\mathrm{Zn}}+\stackrel{+5}{\mathrm{NO}_{3}^{-}}+\mathrm{OH}^{-} \longrightarrow \stackrel{+2}{\mathrm{Z}} \mathrm{CnO}_{2}^{2-}+{\stackrel{-3}{\mathrm{~N}} \mathrm{H}_{3}}$
Increase in ox. state $=2 \times 4$
Decrease in ox. state $=8$
iii) Multiply Zn by 4 to equalize the change in oxidation states.

$$
4 \mathrm{Zn}+\mathrm{NO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow 4 \mathrm{ZnO}_{2}^{2-}+\mathrm{NH}_{3}
$$

iv) Find the total charges on both the sides and find the difference in charges.

Charge on LHS $=(-1)+(-1)=-2$
Charge on RHS $=4 \times(-2)=-8$
Difference of charges $=-8-(-2)=-6$
v) Now, since reaction is taking place in alkaline medium, we will have to add $6 \mathrm{OH}^{-}$on the side falling short in -ve charges, i.e., LHS to equalize the charges on both the sides.
$4 \mathrm{Zn}+\mathrm{NO}_{3}^{-}+7 \mathrm{OH}^{-} \rightarrow 4 \mathrm{ZnO}_{2}^{2-}+\mathrm{NH}_{3}$
vi) Add required no. of water molecules (i.e. $2 \mathrm{H}_{2} \mathrm{O}$) on the side deficient in H and O atoms. To get the balanced equation

$$
4 \mathrm{Zn}+\mathrm{NO}_{3}^{-}+7 \mathrm{OH}^{-} \rightarrow 4 \mathrm{ZnO}_{2}^{2-}+\mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

BALANCING REDOX REACTION BYION-ELECTRON METHOD:

This method of balancing redox reaction involves following steps.

1. Separate the reactants and products into half-reactions involving the elements that changes its oxidation number. Write the skeleton equations for each half-reaction.
2. Balance each half-reaction separately involving given steps.
i) First balance the atoms of the element undergoing oxidation or reduction.
ii) Then balance atoms of the elements other than hydrogen and oxygen.
iii) For balancing oxygen atoms in acidic or neutral medium, add suitable number of $\mathrm{H}_{2} \mathrm{O}$ molecules to the side deficient in O , while in alkaline medium, add equal number of $\mathrm{H}_{2} \mathrm{O}$ molecules as the excess of O on the side having excess of O atoms and add double the number of OH^{-}ions on the opposite side of the equation.
iv) In order to balance the hydrogen atom in acidic or neutral medium, add required number of H^{+}to the side deficient in H , while in alkaline medium, add equal number of OH^{-}ions as the excess number of atom on the side having excess H and add equal number of $\mathrm{H}_{2} \mathrm{O}$ molecule on the opposite side of the equation.
3. Multiply each half-reaction by suitable integer to make the number of electrons lost and gained same and add both the half-equations to get a completely balanced reaction.
Illustration 16: In the equation: $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{K}_{\mathbf{2}} \mathrm{O}+\mathrm{MnO}+\mathrm{H}_{2} \mathrm{O}$,
(A) $10,1,1$
(B) $10,2,2$
(C) $4,1,7$
(D) $10,1,2$

Solution: (D)
Step 1: Select the oxidant, reductant atoms and write their half reactions, one representing oxidation and other reduction.

$$
\begin{array}{ll}
\text { i.e., } & \mathrm{C}_{2}^{+3} \longrightarrow 2 \mathrm{C}^{+4}+2 \mathrm{e} \\
& 5 \mathrm{e}+\mathrm{Mn}^{+7} \longrightarrow \mathrm{Mn}^{+2}
\end{array}
$$

Step 2: Balance the no. of electrons and add the two equations.

Step 3: Write complete molecule of the reductant and oxidant from which respective redox atoms were obtained.

$$
5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{MnO}
$$

Step 4: Balance other atoms if any (except H and O).
In above example K is unbalanced, therefore,
$5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{MnO}+\mathrm{K}_{2} \mathrm{O}$ (Mentioned as product)

Step 5: Balance O atom using $\mathrm{H}_{2} \mathrm{O}$ on desired side.

$$
5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{MnO}+\mathrm{K}_{2} \mathrm{O}+5 \mathrm{H}_{2} \mathrm{O}
$$

Illustration 17: The stoichiometric coefficient of the balanced redox equation,

$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NO}+\mathrm{S}$, in acidic medium will be respectively
(A) $2,4,3,2$
(B) 2, 2, 3, 2
(C) $2,3,3,2$
(D) $3,2,2,3$

Solution: (C)
i) Identify the oxidation \& reduction half reactions.

Reduction half reaction: $\mathrm{HNO}_{3} \rightarrow \mathrm{NO}$
Oxidation half reaction: $\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}$
ii) Atoms of the element undergoing oxidation and reduction are already balanced.
iii) Balancing O atoms,

Reduction half reaction: $\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
Oxidation half reaction: $\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}$
iv) Balancing H atoms,

Reduction half reaction: $3 \mathrm{H}^{+}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
Oxidation half reaction: $\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}$
v) Balancing charge,

Reduction half reaction: $3 \mathrm{e}^{-}+3 \mathrm{H}^{+}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
Oxidation half reaction: $\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
vi) Multiplying equation (A) by 2 and equation (B) by 3 and then adding them.
$\left.3 \mathrm{e}^{-}+3 \mathrm{H}^{+}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}\right] 2$
$\left.\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}\right] 2$
$2 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$
Illustration 18: The stoichiometric coefficient of $\mathrm{FeC}_{2} \mathrm{O}_{4}, \mathrm{KMnO}_{4}, \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{MnSO}_{4}$ of the balanced redox equation:
$\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{CO}_{2}+\mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}$ will be respectively
(A) 10, 6, 5, 6
(B) 10, 6, 6, 5
(C) $10,5,6,5$
(D) $10,5,5,6$

Solution: (A)
i) Identify the oxidation \& reduction halves.

Oxidation half reaction: $\mathrm{KMnO}_{4} \rightarrow \mathrm{MnSO}_{4}$
Reduction half reaction: $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{CO}_{2}$
ii) In both the half-reactions, all the atoms (other than O and H) are not appearing on both sides of the reaction. So, in the oxidation half, $\mathrm{H}_{2} \mathrm{SO}_{4}$ is to be added on the reaction side, while in reduction half, $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$ are to be added on reactant and product side respectively.
iii) Balancing of the atoms of the element undergoing oxidation \& reduction.

Reduction half reaction: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}$
Oxidation half reaction: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}$
iv) Balancing of the atoms of elements other than O and H

Reduction half reaction: $3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}$
Oxidation half reaction: $2 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}$
v) Balancing O atoms,

Reduction half reaction:
$3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
Oxidation half reaction: $3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}$
vi) Balancing H atoms,

Reduction half reaction :

STOICHIOMETRY

$10 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
Oxidation half reaction:
$3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}+6 \mathrm{H}^{+}$
vii) Balancing charge,

Reduction half reaction:

$$
\begin{equation*}
10 \mathrm{e}^{-}+10 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O} \tag{B}
\end{equation*}
$$

Oxidation half reaction:
$3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}$
viii) Multiply equation (A) by 5 and equation (B) by 3 and then adding them,
$\left.10 \mathrm{e}^{-}+10 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KMnO}_{4} \rightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}\right]$
$\left.3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-}\right] 5$
$10 \mathrm{FeC}_{2} \mathrm{O}_{4}+6 \mathrm{KMnO}_{4}+24 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{MnSO}_{4}+3 \mathrm{~K}_{2} \mathrm{SO}_{4}+20 \mathrm{CO}_{2}+24 \mathrm{H}_{2} \mathrm{O}$

CALCULATION OF n-FACTOR

For calculating the n-factor of any reactant in any reaction. One must know the kind of reaction it is, the reactions may be classified into the following three types.

1. Acid-Base Reactions/Neutralization reactions
2. Redox Reactions
3. Precipitation Reactions/Double decomposition reactions

Acid-Base Reaction: According, to the Arrhenius, an acid is a substance that furnishes H^{+}ion(s) in solution, a base is a substance that furnishes OH^{-}ion(s) in solution and neutralization is a reaction in which H^{+}ion furnished by acid combines with OH^{-}ions furnished by base. The number of H^{+}ion(s) furnished per molecule of the acid is its n-factor also called basicity. Similarly the number of OH^{-}ion(s) furnished by the base per molecule is its n-factor, also called acidity.

Some Examples

$$
\begin{aligned}
& \underset{(\mathrm{n}=1)}{\mathrm{HCl}} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
& \underset{(\mathrm{n}=1)}{\mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}
\end{aligned}
$$

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}
$$

$$
(\mathrm{n}=2)
$$

$$
\underset{(\mathrm{n}=1)}{\mathrm{H}_{3} \mathrm{PO}_{4}} \longrightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}
$$

$$
\underset{(\mathrm{n}=3)}{\mathrm{H}_{3} \mathrm{PO}_{4}} \longrightarrow 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}
$$

$$
(\mathrm{n}=3)
$$

$$
\underset{(\mathrm{n}=1)}{\mathrm{H}_{3} \mathrm{PO}_{3}} \longrightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{3}^{-}
$$

$$
\underset{(\mathrm{n}=2)}{\mathrm{H}_{3} \mathrm{PO}_{3}} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{HPO}_{3}^{-}
$$

The n-factor of $\mathrm{H}_{3} \mathrm{PO}_{3}$ cannot be 3 as it has only two dissociable H^{+}ions. So, its n -factor or dissociable protons is 1 or 2 as one of the H -atoms is linked with P atom directly.

Similarly, $\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
n-factor of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1 , because it contains only one dissociable H^{+}ion.
Now, we will consider the n -factor of some bases.

$$
\underset{(\mathrm{n}=2)}{\mathrm{Ba}(\mathrm{OH})_{2}} \longrightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}
$$

$$
\underset{(\mathrm{n}=3)}{\mathrm{Al}(\mathrm{OH})_{3}} \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{OH}^{-}
$$

Similarly, n-factor of $\mathrm{Al}(\mathrm{OH})_{3}$ can also be 1 or 2 or 3 , depending upon the number of OH^{-}released.

REDOX REACTIONS

Those reactions which involve the exchange of electrons are called redox reactions. For the calculation of n-factor of oxidizing agent or reducing agent, the method depends upon the change in oxidation state of the species considered. We will discuss them one by one.
i) When only one atom undergoing either reduction or oxidation e.g.

In such a case, we consider the change in oxidation state of atom undergoing oxidation or reduction change per molecule as the n -factor of the species.
n-factor $=|(+2) \times 1-(+7) \times 1|=5$

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow{ }^{2-} \longrightarrow \mathrm{Cr}^{3+}$ n-factor $=|(+3) \times 2-(+6) \times 2|=6$
$\mathrm{n}=6$
ii) Salts which reacts in such a way that only one atom undergoes change in oxidation state but appears in two products with the same oxidation state:
In such a case the method of calculation of n-factor remains the same i.e., we will calculate the change in oxidation state of the atom per mole of that substance (reactant).

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{+6 \times 2} \longrightarrow \mathrm{Cr}^{2+} \longrightarrow \mathrm{Cr}^{3+}
$$

In this example, oxidation state of Cr changes from +6 to +3 in both the products. So n-factor $=|(+6) \times 2-(+3) \times 2|=6$
iii) Salts which react in such a way that only one atom undergoes change in oxidation state but goes in two products with different oxidation state as a result of either only oxidation or only reduction.

$$
3 \stackrel{+7}{\mathrm{MnO}_{4}^{-}} \longrightarrow 2 \stackrel{+2}{\mathrm{Mn}^{2+}}+\stackrel{+6}{\mathrm{Mn}^{+6}}
$$

STOICHIOMETRY

In such a case, it is impossible to calculate the n-factor until and unless one knows that how much of MnO_{4}^{-}is changing to Mn^{2+} and how much to Mn^{6+} and if one knows the balanced equation then there is no need of calculation of n-factor. Nevertheless in such case the n-factor can be calculated by deducing the total change in oxidation state divided by total number of atom undergoing reduction/ oxidation change. So, for the calculation of n-factor in the above example, out of three moles of MnO_{4}^{-}, two moles are being converted to Mn^{2+} and one mole changes to Mn^{6+}. So total decrease in oxidation state of Mn .
$=|[2 \times(+2)-2 \times(+7)]|+|[1 \times(+6)-1 \times(+7)]|$
$=|4-14|+|6-7|=11$
So, n -factor $=\frac{11}{3}$
iv) Salts which react in such a way that only one atom undergoes change in oxidation state in two product, in one product with changed oxidation state and in other product with same oxidation state as that of reactant.
In such case also one cannot calculate the n-factor without knowing the balanced chemical equation because one must know how much of atom has changed its oxidation state. For example.

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \longrightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

Let us calculate the n-factor of HCl . Out of 14 moles of Cl^{-}(in HCl) only 6 moles of Cl^{-}are changing its oxidation state from -1 to 0 in the product Cl_{2} and the oxidation state of remaining $8 \mathrm{Cl}^{-}$ions remains same in KCl and CrCl_{3}. So, total no. of moles of electrons lost by 14 moles of HCl is 6 . So each mole of HCl takes up $6 / 14$ i.e., $3 / 7$ moles of electrons and hence n-factor of HCl is $3 / 7$.
v) Salts which react in such a way that two or more atoms in the salt undergoes change in oxidation states as a result of either oxidation or reduction. Let us consider the following example,

$$
\mathrm{FeC}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}
$$

In this case, the oxidation of both Fe^{2+} and C^{3+} are changing from +2 and +3 to +3 and +4 respectively. In such a case we will calculate the n-factor of the salt as the total increase or decrease in oxidation state per mole of the salt. As one can see that one mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ contains one mole of Fe^{2+} and one mole of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (i.e. 2 carbon atoms per mole of $\mathrm{C}_{-2} \mathrm{O}_{4}{ }^{2-}$.
Total change in oxidation state
$=|1 \times(+2)-1 \times(+3)|+|2 \times(+3)-2 \times(+4)|$
$=1+2=3$
So, n-factor of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ is 3
vi) Salts which react in such a way that two atoms undergoing change in oxidation state but one undergoing oxidation and other reduction reaction. In such a case one has to calculate the change in oxidation state of either the atom being oxidized or the atom being reduced. For example.

$$
\stackrel{-3 \times 2}{\left(\mathrm{~N}_{4}\right)_{2}} \stackrel{+6 \times 2}{\mathrm{Cr}_{2}} \mathrm{O}_{7} \longrightarrow \stackrel{0 \times 2}{\mathrm{~N}_{2}}+\stackrel{+3 \times 2}{\mathrm{Cr}_{2}} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}
$$

In this reaction, the oxidation state of N is increasing by 6 units and that of Cr is decreasing by 6 unit. So, we can consider either oxidation or reduction product for the calculation of n-factor and it will be the same.
n -factor of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ considering oxidation
$=|(-3) \times 2-(0) \times 2|=6$
n-factor of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ considering reduction

$=|(+6) \times 2-(+3) \times 2|=6$

vii) Species which undergoes disproportionation reaction: Those reaction in which oxidant and reductant are the same species or the same element from the species is getting oxidized as well as reduced.
When the number of moles of atoms being oxidized is equal to the number of moles of atoms being reduced.
The n-factor can be calculated by knowing the balanced chemical equation and considering any of the change taking place. Say for example,

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Out of 2 moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ consumed in the reaction, one mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ is being oxidized $\left(\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}\right)$ and one mole of $\mathrm{H}_{2} \mathrm{O}_{2}$ is being reduced $\left(\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}\right)$. First consider the oxidation reaction

$$
\stackrel{(-1) \times 2}{\mathrm{H}_{2} \mathrm{O}_{2}} \longrightarrow \stackrel{2}{\mathrm{O}}_{2}^{2 \times 0}
$$

n-factor $=|2 \times 0-(-1) \times 2|=2$
Again, considering reduction reaction ${\stackrel{(-1) \times 2}{\mathrm{H}_{2} \mathrm{O}_{2}} \longrightarrow 2 \mathrm{H}_{2}^{(-2) \times 2} \mathrm{O}}^{\mathrm{H}}$
n-factor $=|(-2) \times 2-(-1) \times 2|=2$
So, n-factor of $\mathrm{H}_{2} \mathrm{O}_{2}$ either considering oxidation or reduction reaction is same i.e. 2.

PRECIPITATION/DOUBLE DECOMPOSITION REACTIONS:

In such reaction, there is no change in oxidation state of any atom. The n-factor of the salt can be calculated by multiplying the oxidation state of the cation/anion by total no. of atoms per molecule of the salt. For example

$$
\underset{\mathrm{n}=2}{\mathrm{BaCl}_{2}}+\underset{\mathrm{n}=2}{\mathrm{Na}_{2} \mathrm{SO}_{4}} \longrightarrow \mathrm{BaSO}_{4} \downarrow+2 \mathrm{NaCl}
$$

for BaCl_{2}
n-factor $=$ Oxidation state of Ba atom in $\mathrm{BaCl}_{2} \times$ number of Ba atoms in 1 molecule of BaCl_{2}

$$
=(+2) \times 1=2
$$

for $\mathrm{Na}_{2} \mathrm{SO}_{4}$
n -factor $=$ Oxidation state of $\mathrm{Na} \times$ number of Na -atoms in 1 molecule of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$=(+1) \times 2=2$

TITRATION

The process of determination of concentration of a solution with the help of a solution of known concentration (standard solution) is called titration.
Titration is divided into following four categories.
i) Simple Titration
ii) Double Titration
iii) Back Titration
iv) Iodimetric and lodometric Titration

Simple Titration: A known volume of the solution of unknown concentration is taken in a flask and required reagents are added to it. The solution of known concentration is added from the burette in the solution of unknown concentration till the latter reacts completely. This process is called titration. At the end point (equivalence point) the equivalents or milliequivalent of the two reacting substances are equal.
Volume of solution (A) $=V_{A}$ litres
Normality of solution (A) $=\mathrm{N}_{\mathrm{A}}$
Equivalents of substance $(A)=N_{A} V_{A}$
Similarly, equivalents of substance $(B)=N_{B} V_{B}$
At the equivalence point (end point) the equivalents (not the moles) of the two substance are equal.

$$
\mathrm{N}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}(\text { litre })=\mathrm{N}_{\mathrm{B}} \times \mathrm{V}_{\mathrm{B}} \text { (litre) }
$$

STOICHIOMETRY

Illustration 19: $40 \mathrm{ml} \mathrm{N} / 10 \mathrm{HCl}$ and $60 \mathrm{ml} \mathrm{N} / 20 \mathrm{KOH}$ are mixed together. Calculate the normality of the salt formed.
(A) 0.06
(B) 0.09
(C) 1
(D) 0.03

Solution: (D)
Milli equivalents of $\mathrm{HCl}=\mathrm{N} \times \mathrm{V}(\mathrm{ml}) \quad=\frac{1 \times 40}{10}=4$
Milli equivalents of $\mathrm{KOH}=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=\frac{1 \times 60}{20}=3$
One milli equivalent of an acid neutralizes one milli equivalent of a base
Milli equivalent of HCl left $\quad=4-3=1$
Total volume of the solution $\quad=40+60=100 \mathrm{ml}$
Milli equivalents of $\mathrm{HCl} \quad=\mathrm{N} \times \mathrm{V}(\mathrm{ml})$
$1=N \times 100$
Normality (N) of HCl left in solution $\quad=0.01$
Salt formed $=$ Milli equivalent of acid or base neutralized
Milli equivalents of the salt formed $=\mathrm{N} \times \mathrm{V}(\mathrm{ml})$
$3=N \times 100$
Normality (N) of salt formed $\quad=0.03$
Double Titration: If an aqueous solution contains a mixture of any two of the three $\mathrm{NaOH}, \mathrm{NaHCO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and it has to be titrated against an acid HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$, it will require two indicators to determine the strength of the bases present. The two indicators used are phenolphthalein and methyl orange.
Method: A given volume of the aqueous solution of the bases is taken and phenolphthalein indicator is added to it. This solution is titrated with an acid of known normality to the end point the volume of the acid used is noted. This end point is called first end point. Now in the same solution methyl orange is added and again titrated with an acid of known strength to the end point. It is called second end point. The volume of acid, used in the second end point is also noted. The normality of the bases present is then calculated.
Principle: In the presence of phenolphthalein indicator
i) $\quad \mathrm{NaOH}$ is completely neutralized by the acid.
ii) Only half of the milliequivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present are titrated as the phenolphthalein will show the colour change when only NaHCO_{3} (weak base) and neutral species are left in the reaction mixture. The following reactions take place,

$$
\begin{aligned}
& \mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \underset{\text { weak base }}{\mathrm{NaHCO}_{3}}+\mathrm{NaCl}
\end{aligned}
$$

Since phenolphthalein is a weak organic acid, and it changes its colour in weakly basic medium (NaHCO_{3}), so as soon as the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is converted to NaHCO_{3} phenolphthalein shows the colour change indicating the completion of the reaction.
In the presence of methyl orange, all the basic substances left in the mixture will be neutralized by acid and methyl orange will show the colour change when the medium is weakly acidic

$$
\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \text { i.e. } \mathrm{H}_{2} \mathrm{CO}_{3}\right) \text {. }
$$

Titration of the solution containing both NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$:

A given volume of the aqueous solution is titrated with an acid of known normality using phenolphthalein indicator. Suppose 'a' milli equivalents of acid are used in the first end point then,
milli equivalent of $\mathrm{NaOH}+1 / 2$ milli equivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad=$ milli equivalent of acid $=\mathrm{a}$
...(1)
Now in the same already titrated solution methyl orange indicator is added and again titrated to the end point. Suppose 'b' milli equivalents of the acid are used at the second end point.
$1 / 2$ milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ milli equivalents of acid $=\mathrm{b}$
From equation (1) and (2)

Milli equivalents of acid used by $\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \mathrm{~b}$ milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Milli equivalents of acid used by $\mathrm{NaOH}=a-b \quad=$ milli equivalent of NaOH
Knowing the milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or NaOH and the volume of the solution titrated, their normality can be calculated.

Illustration 20:

NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are dissolved in 200 ml aqueous solution. In the presence of phenolphthalein indicator. 17.5 ml of 0.1 N HCl are used to titrate this solution. Now methyl orange is added in the same solution titrated and it requires 2.5 ml of the same HCl . Calculate the normality of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and their mass present in the solution.

Solution:

Milli equivalents (a) of HCl used in the presence of phenolphthalein indicator.

$$
\begin{equation*}
=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=0.1 \times 17.5=1.75 \tag{1}
\end{equation*}
$$

$1.75(a)=$ milli. equivalent. of $\mathrm{NaOH}+1 / 2$ milli equivalent. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Milli equivalent. (b) of HCl used in the presence of methyl orange indicator

$$
\begin{align*}
& =\mathrm{N} \times \mathrm{V}(\mathrm{ml}) \\
& =0.1 \times 2.5=0.25 \tag{2}
\end{align*}
$$

$0.25(b)=1 / 2$ milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
For $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution: From equation (2)
Milli equivalent. of acid used by $\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \mathrm{~b}$

$$
\stackrel{3}{=} 2 \times 0.25=0.5
$$

Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution

$$
=200 \mathrm{ml}
$$

Suppose, Normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$=\mathrm{N}$
$=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=200 \mathrm{~N}$
Milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad=\mathrm{N} \times \mathrm{V}$
Putting equivalents of acid and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ equal.

$$
200 N=0.5
$$

or (Normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution) $\mathrm{N}=\frac{1}{400}$

$$
\text { Mass of } \left.\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{N} \times \mathrm{E} \times \mathrm{V} \text { (litre }\right)
$$

(E for $\mathrm{Na}_{2} \mathrm{CO}_{3}=53$)

$$
=\frac{1}{400} \times 53 \times 0.2
$$

For NaOH solution: From equation (1) and (2)

$$
=0.0265 \text { gram }
$$

$$
\text { Milli equivalent. acid used by } \mathrm{NaOH} \quad=a-b=1.75-0.25
$$

$$
=1.50
$$

Volume of NaOH solution $=200 \mathrm{ml}$
Suppose, Normality of NaOH solution $=\mathrm{N}$
Mili equivalent. of $\mathrm{NaOH}=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=200 \mathrm{~N}$
Putting the mili equivalent. of NaOH and acid used equal

$$
200 \mathrm{~N}=1.5
$$

(Normality of NaOH solution) $\mathrm{N}=\frac{1.5}{200}$

$$
\text { Mass of } \mathrm{NaOH} \quad=\mathrm{N} \times \mathrm{E} \times(\mathrm{V} \text { litres })
$$

$$
=\frac{1.5}{200} \times 40 \times 0.2
$$

$(\mathrm{E}$ for $\mathrm{NaOH}=40)=\mathbf{0 . 0 6} \mathbf{g}$
Titration of the solution containing both $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} :
Given volume of the solution is titrated by an acid using phenolphthalein indicator. Suppose 'a' milli equivalents of acid are used in the first end point. Then

STOICHIOMETRY

$1 / 2$ milli equivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ milli equivalents of acid $=\mathrm{a}$
Now in the same already titrated solution methyl orange indicator is added and again titrated to the end point. Suppose 'b' milli equivalents of the acid are used at the second end point. Then
$1 / 2$ milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}+$ milli equivalents of NaHCO_{3}

$$
=\text { milli equivalents of acid = b ..(2) }
$$

From equation (1) and (2)
Milli equivalents of acid used by $\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \mathrm{a}$
milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Milli equivalents of acid used by $\mathrm{NaHCO}_{3}=b-a$

$$
=\text { milli equivalent of } \mathrm{NaHCO}_{3}
$$

Knowing the milli equivalents of the base and volume of the solution titrated, the normality (strength) of the bases can be calculated.

Illustration 21:

Both $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} are present in an aqueous solution. In the presence of phenolphthalein indicator 10 ml of this solution requires 2.5 ml of $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ for titration. After this methyl orange is added in the same solution and titration requires $5 \mathrm{ml} 0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} in $\mathrm{g} / \mathrm{litre}$.

Solution:

Milli equivalent. (a) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used in the presence of phenolphthalein indicator

$$
\begin{equation*}
=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=0.1 \times 2 \times 2.5=0.5 \tag{1}
\end{equation*}
$$

$\mathrm{a}=0.5=1 / 2$ milli equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Milli. equivalent. (b) of $\mathrm{NaHCO}_{3}+1 / 2$ milli equivalent. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
For $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution: From equation (1)
Milli equivalent. of acid used by $\mathrm{Na}_{2} \mathrm{CO}_{3}=2 \times 0.5=1$
Suppose, Normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $=\mathrm{N}$
Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution taken $=10 \mathrm{ml}$
Milli eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ taken $\quad=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=10 \mathrm{~N}$
Putting the milli eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ equal,

$$
1=10 \mathrm{~N}
$$

or (Normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}$)

$$
N=0.1
$$

Strength (S) in g/litre

$$
\begin{aligned}
& =\mathrm{N} \times \mathrm{E} \\
& =0.1 \times 53\left(\mathrm{E} \text { for } \mathrm{Na}_{2} \mathrm{CO}_{3}=53\right) \\
& =5.3 \mathrm{~g} / \mathrm{litre}
\end{aligned}
$$

For NaHCO_{3} solution: From equations (1) and (2) milli eq. of acid used by

$$
\mathrm{NaHCO}_{3}=\mathrm{b}-\mathrm{a}=1.0-0.5=0.5
$$

Suppose, Normality of NaHCO_{3} solution $=\mathrm{N}$

$$
\text { Volume of } \mathrm{NaHCO}_{3} \text { solution taken }=10 \mathrm{ml}
$$

$$
\text { Milli equivalents of } \mathrm{NaHCO}_{3} \text { taken }=10 \mathrm{~N}
$$

Putting the milli eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaHCO_{3} equal, $0.5=10 \mathrm{~N}$
or (Normality of NaHCO_{3} solution) $\mathrm{N}=0.05$
Strength (S) in g/litre
$=N \times E$
(E for $\mathrm{NaHCO}_{3}=84$)
$=0.05 \times 84=4.2 \mathrm{~g} /$ litre
Back Titration: Let us consider that we have an impure solid substance ' Z ' weighing ' w ' g and we are required to calculate the percentage purity of ' Z ' in the sample. We are also provided with two solutions ' X ' and ' Y ', where the concentration of ' Y ' is known $\left(N_{1}\right)$ and that of ' X ' is unknown. For the back titration to work, following conditions are to be satisfied
a) Compounds ' X ', ' Y ' and ' Z ' should be such that ' X ' and ' Y ' reacts with each other.
b) ' X ' and pure ' Z ' also reacts with each other but the impurity present in ' Z ' does not react with ' X '.

$$
\begin{gathered}
Z+X(\text { excess }) \rightarrow \text { Product } 1 \\
\text { Remaining }(X)+Y \rightarrow \text { Product } 2
\end{gathered}
$$

Note: Y should not react with Product 1
Milli equivalent of $\mathrm{Y}=\mathrm{N}_{2} \mathrm{~V}_{2}$
Where N_{2} and $\mathrm{V}_{2}(\mathrm{ml})$ is the normality and volume of Y

Initial mili equivalent of $X=N_{1} V_{1}$
Where N_{1} and $V_{1}(\mathrm{ml})$ is the normality and volume of X
Remaining milli equivalents of X after reacting with $Y=N_{1} V_{1}-N_{2} V_{2}$
Remaining milli equivalents of $X=$ milli equivalents of Z
$N_{1} V_{1}-N_{2} V_{2}==\frac{a \times 100}{\text { equivalent weight }}$
Where ' a ' is the weight of pure Z which is reacted.
$\mathrm{a}=\frac{\text { Molecular weight } \times\left(\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{2} \mathrm{~V}_{2}\right)}{\mathrm{n}-\text { factor }}$
\therefore Percentage purity of ' Z ' $=\frac{\left(\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{1} \mathrm{~V}_{1}\right)}{\mathrm{n}-\text { factor }} \times \frac{\text { Molar mass of } \mathrm{Z}}{\mathrm{w}} \times 100$

Illustration 22: 20 g of a sample of $\mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in 10 ml . of 0.5 N HCl solution. The excess of HCl was titrated with 0.2 N NaOH . The volume of NaOH used was 10 cc . Calculate the percentage of $\mathrm{Ba}(\mathrm{OH})_{2}$ in the sample.
Solution: Milli eq. of HCl initially $=10 \times 0.5=5$
Milli eq. of NaOH consumed $=$ Milli eq. of HCl in excess
$=10 \times 0.2=2$
\therefore Milli eq. of HCl consumed $=$ Milli eq. of $\mathrm{Ba}(\mathrm{OH})_{2}$
$=5-2=3$
\therefore eq. of $\mathrm{Ba}(\mathrm{OH})_{2} \quad=3 / 1000=3 \times 10^{-3}$
Mass of $\mathrm{Ba}(\mathrm{OH})_{2} \quad=310^{-3}(171 / 2)=0.2565 \mathrm{~g}$.
$\% \mathrm{Ba}(\mathrm{OH})_{2} \quad=(0.2565 / 20) 100=1.28 \%$

IODIMETRIC AND IODOMETRIC TITRATIONS

The redox-titration using iodine directly or indirectly as an oxidizing agent are called lodine Titrations. These are of two types.

1. Iodimetric Titrations: Iodimetric titrations are defined as those iodine titrations in which a standard iodine solution is used as an oxidant and iodine is directly titrated against a reducing agent. lodimetric procedures are used for the determination of strength of reducing agent like thiosulphates, sulphites, arsenites and stannous chloride etc., by titrating them against standard solution of iodine taken in a burette. Some cases of oxidation-reduction reactions are given as under:
i) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
ii) $\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HI}$
iii) $\mathrm{Na}_{3} \mathrm{AsO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{3} \mathrm{AsO}_{4}+2 \mathrm{HI}$
2. Iodometric Titrations: lodometric titrations are defined as those iodine titrations in which some oxidizing agent liberates iodine from an iodine solution and then liberated iodine is titrated with a standard solution of a reducing agent added from a Burette. In such titrations, a neutral or an acidic solution of oxidizing agent is employed. The amount of iodine liberated from an iodide, (i.e. KI) is equivalent to the quantity of the oxidizing agent present. lodometric titrations are used for the determination of CuSO_{4}, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{KMnO}_{4}$, ferric ions, antimonite ions, $\mathrm{H}_{-2} \mathrm{O}_{2}, \mathrm{MnO}_{2}$, bromine and chlorine etc. The equations for some of the reactions are as follows:
i) $\quad 2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
ii) $\quad 2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{-2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{-2} \mathrm{O}+5 \mathrm{O}$
$10 \mathrm{KI}+5 \mathrm{H}_{-2} \mathrm{SO}_{4}+5 \mathrm{O} \rightarrow 5 \mathrm{~K}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{I}_{2}$

STOICHIOMETRY

iii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{O}$
$6 \mathrm{KI}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{O} \rightarrow 3 \mathrm{~K}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
In the above reactions, the liberated iodine is titrated with a standard sodium thiosulphate.
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
Illustration 23: 0.5 g sample containing MnO_{2} is treated with HCl , liberating Cl_{2}. $\mathrm{The}^{\mathrm{Cl}} \mathrm{I}_{2}$ is passed into a solution of KI and $30.0 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are required to titrate the liberated iodine. Calculate the percentage of MnO_{2} in sample. (At. Wt. of $\mathbf{M n}=55$).

Solution:

Redox change are: $2 \mathrm{e}+\mathrm{I}_{2}^{0} \longrightarrow 2 \mathrm{I}^{-}$

$$
2 \mathrm{~S}_{2}^{2+} \longrightarrow \mathrm{S}_{4}^{(5 / 2)^{+}}+2 \mathrm{e}
$$

$$
2 \mathrm{e}+\mathrm{Mn}^{4+} \longrightarrow \mathrm{Mn}^{2+}
$$

The reactions suggest that,
Meq. of $\mathrm{MnO}_{2}=$ Meq. of Cl_{2} formed $=$ Meq. of I_{-2} liberated
$=$ Meq. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ used
$\therefore \frac{\mathrm{w}}{\mathrm{M} / 2} \times 1000=0.1 \times 1 \times 30$
$\left[\because \mathrm{N}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}=\mathrm{M}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}\right.$ since valency factor = 1, see redox changes for $\left.\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right]$
or $\quad \mathrm{w}_{\mathrm{MnO}_{2}}=\frac{0.1 \times 1 \times 30 \times \mathrm{M}}{2000}=\frac{0.1 \times 1 \times 30 \times 87}{2000} \quad\left(\because \mathrm{M}_{\mathrm{MnO}_{2}}=87\right)$
$\mathrm{w}_{\mathrm{MnO}_{2}}=0.1305$
Purity of $\mathrm{MnO}_{2}=\frac{0.1305}{0.5} \times 100=26.1 \%$

VOLUME STRENGTH OF $\mathrm{H}_{2} \mathrm{O}_{2}$ SOLUTION

The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is usually represented in terms of volume. If a sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is labeled as ' x volume', it means that 1 volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution gives ' x volumes' of O_{2} gas at STP on complete decomposition.

Consider the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ as

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{H}_{2} \mathrm{O}+\quad \mathrm{O}_{2}
$$

$\because 22400 \mathrm{ml}$ of O_{2} gas is liberated by 68 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution
$\therefore \mathrm{x} \mathrm{ml}$ of O_{2} gas will be liberated by $=\frac{68 \mathrm{x}}{22400}=\frac{17 \mathrm{x}}{5600} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$
It means that $\frac{17 \mathrm{x}}{5600} \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ will be present in 1 ml of solution.
$\therefore 1000 \mathrm{ml}$ of solution contains $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{17 \mathrm{x}}{5600} \times 1000=\frac{17 \mathrm{x}}{5.6}$
Strength ($\mathrm{g} \mathrm{L}^{-1}$) $=$ Normality \times Equivalent weight

$$
\begin{aligned}
& \frac{17 x}{5.6}=\mathrm{N} \times \frac{34}{2} \quad\left(\because \text { n-factor of } \mathrm{H}_{2} \mathrm{O}_{2}=2\right) \\
& x=5.6 \times \mathrm{N}
\end{aligned}
$$

i.e., Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=5.6 \times$ Normality

Illustration 24:

A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $\mathrm{x} \%$ by mass. x ml of KMnO_{4} are required to oxidize one gram of this
$\mathrm{H}_{2} \mathrm{O}_{2}$ sample. Calculate the normality of KMnO_{4} solution.

Solution:

Suppose, Mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $=100 \mathrm{~g}$
Mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ present $\quad=x$ gram
Mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution taken $=1$ gram
Mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ present in 1 gram solution $=\frac{x}{100}$
Equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{W}{\mathrm{E}}$

$$
\begin{equation*}
=\frac{x}{100 \times 17} \tag{1}
\end{equation*}
$$

$$
\left(\mathrm{E} \text { for } \mathrm{H}_{2} \mathrm{O}_{2}\right)=17
$$

Equivalents of $\mathrm{KMnO}_{4}=\mathrm{N} \times \mathrm{V}$ (litre) $=\mathrm{N} \times \mathrm{x} \times 10^{-3}$
Putting equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ and KMnO_{4} equal, $\frac{\mathrm{x}}{100 \times 17}=\mathrm{N} \times \mathrm{x} \times 10^{-3}$

$$
\mathrm{N}=0.59\left(\text { Normality of } \mathrm{KMnO}_{4}\right)
$$

PERCENTAGE LABELING OF OLEUM

Oleum or fuming sulphuric acid contains SO_{3} gas dissolved in sulphuric acid. When water is added to oleum, SO_{3} - reacts with $\mathrm{H}_{2} \mathrm{O}$ to form $\mathrm{H}_{2} \mathrm{SO}_{4}$, thus mass of the solution increases.

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
$$

The total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ obtained by diluting 100 g of sample of oleum with desired amount of water, is equal to the percentage labeling of oleum.
$\%$ labeling of oleum $=$ Total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in oleum after dilution.

$$
=\text { mass of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { initially present }+ \text { mass of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { produced on dilution. }
$$

Illustration 25:

Calculate the composition of 109% oleum.

Solution:

Let the mass of SO_{3} in the sample be ' w ' g , then the mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ would be $(100-w) g$. On dilution,
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
$80 \mathrm{~g} \quad 18 \mathrm{~g}$
Moles of SO_{3} in oleum $=\frac{W}{80}=$ Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ formed after dilution.
\therefore Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ formed on dilution $=\frac{98 \mathrm{w}}{80}$
Total mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in oleum after dilution $=\frac{98 w}{80}+(100-w)=109$
$\therefore \mathrm{w}=40$.
Thus oleum sample contains $40 \% \mathrm{SO}_{3}$ and $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.

STOICHIOMETRY

HARDNESS OF WATER

Hardness of water is due to the presence of Ca^{++}and Mg^{++}in it. Hardness of water is of two types:

1. Temporary Hardness: It is due to the presence of dissolved $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ in water. To determine the temporary hardness a given volume of hard water is titrated with a strong acid $(\mathrm{HCl}$ or $\mathrm{H}_{2} \mathrm{SO}_{4}$) using methyl orange indicator.
2. Permanent Hardness: It is due to the presence of dissolved $\mathrm{CaCl}_{2}, \mathrm{CaSO}_{4}, \mathrm{MgCl}_{2}$ and MgSO_{4} in water. A known volume of hard water is taken and an excess of known equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are added in it. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with Ca^{++}and Mg^{++}forming precipitates of CaCO_{3} and MgCO_{3}. These precipitates are filtered off. The filtrate is titrated with a strong acid (HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$). Knowing the equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ added and left unreacted, the equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ consumed by hard water is known. The equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ consumed is equal to the total equivalents of Ca^{++}and Mg^{++}ions present in hard water.
Hardness of water is represented in ppm ($\mathrm{mg} / \mathrm{litre}$) of CaCO_{3} i.e. milli grams of CaCO_{3} present per litre of hard water. But hard water does not contain CaCO_{3}. Hard water contains $\mathrm{CaCl}_{2}, \mathrm{MgCl}_{2}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ etc.
One mole $\mathrm{CaCl}_{2} \equiv$ one mole CaCO_{3} or $\quad 111 \mathrm{~g} \mathrm{CaCl}_{2} \equiv 100 \mathrm{~g} \mathrm{CaCO}_{3}$ Similarly, $\quad 120 \mathrm{~g} \mathrm{MgSO}_{4} \equiv 100 \mathrm{~g} \mathrm{CaCO}_{3}$
Thus mass of CaCO_{3} corresponding to the mass of $\mathrm{CaCl}_{2}, \mathrm{MgSO}_{4}$ etc., present in hard water is calculated. Milligrams of CaCO_{3} per litre of hard water is called hardness of water in ppm.

KEY POINTS

. Relative Atomic Mass: It is the ratio of the mass of 1 atom of a substance and $1 / 12$ of mass of 1 atom of C^{12} isotope.

- Atomic Mass Unit (or amu): The atomic mass unit (amu) is equal to one twelfth $\left(\frac{1}{12}\right)$ of the mass of one atom of carbon-12 isotope.
- Atomic Mass: It is the mass of 1 atom of a substance it is expressed in amu Atomic mass $=$ RAM $\times 1 \mathrm{amu}$
- Gram Atomic Mass: The atomic mass of an element expressed in gram is called gram atomic mass of the element.
. Molecules: It is the smallest particle of matter which as free existence. Molecules can be further divided into its constituents atoms by physical and chemical process.
. Molecular Mass: It is the mass of one molecule
- Gram Molecular Mass: The molecular mass of a substance expressed in gram is called the grammolecular mass of the substance.
. MOLES: Gram-molecules and gram-atom are termed as a mole of molecules and a mole of atoms respectively, e.g., 1 gram-molecule of chlorine and 1 gram atom of chlorine are expressed as 1 mole of Cl_{2} and 1 mole of Cl respectively.
. Law of Conservation Of Mass: In a chemical change total mass remains conserved. i.e. mass before reaction is always equal to mass after reaction

Law of Constant or Definite Proportion: All chemical compounds are found to have constant composition irrespective of their method of preparation or sources.

Law of Multiple Proportion: When one element combines with the other elements to form two or more different compounds, the mass of one elements, which combines with a constant mass of the other, bear a simple ratio to one another.

Gay Lussac's Law: Gas react or formed in the simple ratio of their volume. Provided all measurement are in the same condition of temperature and pressure.
AVOGADRO'S HYPOTHESIS: Equal volume of all gases have equal number of molecules (not atoms) at same temperature and pressure conditions.

PERCENTAGE COMPOSITION: percentage mass of an element
$=\frac{\text { mass of that element in the compound }}{\text { molar mass of that compound }} \times 100$
EMPIRICAL FORMULA FOR MOLECULAR FORMULA
molecular formula $=$ empirical formula $\times \mathrm{n} ;$ where $\mathrm{n}=\frac{\text { molecualr formula mass }}{\text { empirical formula mass }}$
LIMITING REAGENT: The reactant which is consumed completely is known as limiting reagent.
Molarity (M): The no. of moles of solute present in one litre of solution is called the molarity (M).
Molality (m): No. of moles of solute present in one kilogram of solvent is know as molality
Normality (N): No of equivalents of solute present in one litre of the solution is known as Normality (N).

Mass-Mass Relationship: It relates the mass of a species (reactant or product) with the mass of another species (reactants or product)

Mass-Volume Relationship: It relates the mass of a species (reactant or product) and the volume of a gaseous species (reactant or product) involved in a chemical reaction.
. Volume-Volume Relationship: It relates the volume of gaseous species (reactants or products) with the volume of another gaseous species (reactant or product) involved in a chemical reaction.
. "Oxidation" is defined as the addition of oxygen/ electronegative element to a substance or removal of hydrogen/ electropositive element from a substance.
"Reduction" is defined as the addition of hydrogen / electropositive element to a substance or removal of oxygen / electronegative element from a substance.

