Stoichiometry: Question

Conceptual Questions	2
Single Correct Choice Questions	3
Level-I	
Level-II	
Level-III	
More Than One Answer Questions	9
Level-I	
Level-II	12
Level-III	14
Passage	15
Passage–I	
Passage–II	
Passage–III	16
Match The Column	17
Assertion/Reason Questions	18
Integer Answer Type Questions	19
Subjective Questions	20
Previous Year IIT-JEE Questions	21

CONCEPTUAL QUESTIONS MOLE: How many moles of K₂Cr₂O₂ in acidic medium are required to react completely with one mole of 1. KHC₂O₄ (A) 2 / 3 (B) 1 / 3 (C)3 (D)6 **OXIDATION NUMBER** Sulphur has highest oxidation state in 2. $(C) Na_2 S_2 O_3$ $(D) Na_2 S_4 O_6$ $(A) H_2 SO_1$ (B) SO₂ 3. In which of the following compound transition metal has zero oxidation state (A) CrO₅ $(B) NH_2 NH_2$ (C) Ni(ClO₄)₂ (D) [Fe(CO)₅] TYPE OF REDOX REACTIONS Consider the following reactions: (i) $C_2O_4^{2-} \longrightarrow CO_2$ (ii) $SO_4^{2-} \longrightarrow SO_3^{2-}$ (iii) $MnO_4^{2-} \longrightarrow MnO_4$ (iv) $Fe^{3+} \longrightarrow Fe^{2+}$ Choose the correct answer:-(A) (i) & (ii) shows oxidation (B) (iii) & (iv) shows reduction (C) (i) & (iii) shows oxidation (D) (iii) & (iv) shows oxidation In the reaction $Cl_2 + OH^- \longrightarrow Cl^- + ClO_3^- + H_2O$, Chlorine is 5. (A) oxidized (B) reduced (C) oxidized as well as reduced (D) neither oxidized nor reduced Which of the acid has oxidizing as well as reducing properties? 6. $(B) H_2 SO_4$ (D) HNO (A) HNO (C) HCI Which of the following is disproportionation reaction: 7 $(A) 2CrO_4^{2} + 2H^+ \longrightarrow Cr_2O_7^{2} + H_2O$ (B) $3CI_2 + 6OH^- \longrightarrow 5CI^- + CIO_3^- + 3H_2O$ (C) CaCO₃ + 2H⁺ \longrightarrow Ca²⁺ + H₂O + CO₂ (D) none of these 8. In the following reaction $3Br_2 + 6CO_3^2 + 3H_2O \longrightarrow 5Br^- + BrO_3^- + 6HCO_3^-$ (A) Bromine is oxidized and carbonate is reduced (B) Bromine is reduced and water is oxidized (C) Bromine is neither reduced nor oxidized (D) Bromine is both reduced and oxidized 9. Which of the following are not examples of disproportionation reaction (A) $Ag(NH_2)^+$ + 2H⁺ \longrightarrow Ag^+ + 2NH₄⁺ (B) $CI_2 + OH^- \longrightarrow CIO^- + CI^- + H_2O$ (C) Cu₂O + 2H⁺ \longrightarrow Cu + Cu²⁺ + H₂O (D) $2HCuCl_2 \xrightarrow{\text{dilute with H}_2O} Cu + Cu^{2+} + 4Cl^- + 2H^+$ **Calculation of n-Factor** For the reaction: $2\text{FeS}_2 + \frac{11}{2}\text{O}_2 \longrightarrow \text{Fe}_2\text{O}_3 + 4\text{SO}_2$ 10. What will be the equivalent weight of FeS₂, if the molecular weight of FeS₂ is M? (A) $\frac{M}{8}$ (C) $\frac{M}{11}$ (B) M (D) Can't be calculated

SINGLE CORRECT CHOICE

LEVEL - I

MOLES

The number of moles of CaCl ₂ needed to react with excess of AgNO ₃ to produce 4.31 gram of AgCl.						
(A) 0.030	(B) 0.015	(C) 0.045	(D) 0.060			
		e CaCl ₂ and CO ₂ accordir	ng to the reaction, $CaCO_{3}(s)$ +			
The mass of CaCO ₃ is re (A) 0.1g	equired to react complete (B) 0.5 g	ly with 25 mL of 0.75 M H (C) 1.5 g	ICI is (D) 0.94 g			
		manganese dioxide (MnC	D_2) with aqueous hydrochloric			
4HCl (aq) + MnO ₂ (s) \rightarrow	$2H_2O(I) + MnCI_2(aq) + CI_2$	₂ (g)				
The grams of HCI react (A) 84 g	with 5.0 g of manganese (B) 0.84 g	dioxide will be [at.mass o (C) 8.4g	f Mn = 55] (D) 4.2 g			
-	-	to react completely to yie (C) 1 : 3	ld a mixture of ICI and ICI ₃ . (D) 2 : 3			
Calculate the weight of i (A) 37.3 gm	iron which will be convert (B) 3.73 gm	ed into its oxide by the ac (C) 56 gm	ction of 18g of steam on it. (D) 5.6 gm			
became Cl [.] . The formul	a of the oxide is (atomic	weight Cr = 52, O = 16)	c formula to $Cr_2O_7^{2^{-}}$. CIO ⁻ (D) CrO			
	2	4				
		(C) 0.24 mole	(D) 0.25 mole			
25.0 ml of HCl solution g HCl solution is	gave, on reaction with exc	cess AgNO $_3$ solution 2.12	5 g of AgCl. The normality of			
(A) 0.25	(B) 0.6	(C) 1.0	(D) 0.75			
GRAVIMETRIC ANALYSIS						
vapour would be:						
(A) 10	(B) 20	(C) 48	(D) 12			
precipitate the calcium a	as calcium carbonate. Th	his $CaCO_3$ is heated to co	onvert all the calcium to CaO			
	(A) 0.030 Calcium carbonate react $2HCl(aq) \rightarrow CaCl_2(aq)$. The mass of $CaCO_3$ is re (A) 0.1g Chlorine is prepared in thacid according to the react $4HCl(aq) + MnO_2(s) \rightarrow$ The grams of HCl react (A) 84 g 25.4 g of iodine and 12.3 Calculate the ratio of mode (A) 1 : 1 Calculate the weight of ind (A) 37.3 gm It takes 0.15 mole of ClO became Cl. The formuld (A) CrO_3 8 g of sulphur is burnt to solution. The amount of (A) 1 mole 25.0 ml of HCl solution of HCl solution is (A) 0.25 VIMETRIC ANALYSIS If ten volumes of dihydro vapour would be: (A) 10 A 10.0 g samples of a magnetic provided the solution is and the final mass of Calculate the calcium and and the final mass of Calculate the calculate	(A) 0.030 (B) 0.015 Calcium carbonate reacts with aqueous HCl to giv $2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$. The mass of CaCO ₃ is required to react complete (A) 0.1g (B) 0.5 g Chlorine is prepared in the laboratory by treating the acid according to the reaction $4HCl(aq) + MnO_2(s) \rightarrow 2H_2O(l) + MnCl_2(aq) + Cl_2$ The grams of HCl react with 5.0 g of manganese (A) 84 g (B) 0.84 g 25.4 g of iodine and 12.2 g of chlorine are made the Calculate the ratio of moles of ICl and ICl_3. (A) 1 : 1 (B) 1 : 2 Calculate the weight of iron which will be converted (A) 37.3 gm (B) 3.73 gm It takes 0.15 mole of CIO ⁻ to oxidize 12.6 g of christ became Cl ⁻ . The formula of the oxide is (atomic Cl) (A) CrO ₃ (B) CrO ₂ 8 g of sulphur is burnt to form SO ₂ which is oxidized solution. The amount of BaSO ₄ , precipitate is (A) 1 mole (B) 0.5 mole 25.0 ml of HCl solution gave, on reaction with exect HCl solution is (A) 0.25 (B) 0.6 VIMETRIC ANALYSIS If ten volumes of dihydrogen gas reacts with five verted variables of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium chloride precipitate the calcium as calcium carbonate. The weight of a mixture of calcium carbonate. The weight of the calcium as calcium carbonate. The weight of	(A) 0.030(B) 0.015(C) 0.045Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 accordin 2HCl(aq) \rightarrow CaCl2(aq) + CO2(g) + H2O(l).The mass of CaCO3 is required to react completely with 25 mL of 0.75 M H (A) 0.1g(B) 0.5 g(C) 1.5 gChlorine is prepared in the laboratory by treating manganese dioxide (MnC acid according to the reactionHCl (aq) + MnO2(s) \rightarrow 2H2O(l) + MnCl2(aq) + Cl2(g)The grams of HCl react with 5.0 g of manganese dioxide will be [at.mass of (A) 84 g(B) 0.84 g(C) 8.4g25.4 g of iodine and 12.2 g of chlorine are made to react completely to yiel Calculate the ratio of moles of ICl and ICl3.(A) 1 : 1(B) 1 : 2(C) 1 : 3Calculate the weight of iron which will be converted into its oxide by the act (A) 37.3 gm(B) 3.73 gm(C) 56 gmIt takes 0.15 mole of CIO to oxidize 12.6 g of chromium oxide of a specific became CI: The formula of the oxide is (atomic weight Cr = 52, O = 16)(A) CrO3(B) CrO2(A) 1 mole(B) 0.5 mole(C) 0.24 mole25.0 ml of HCl solution gave, on reaction with excess AgNO3 solution 2.12 HCl solution is (A) 0.25(B) 0.6(C) 1.0VIMETRIC ANALYSISIf ten volumes of dihydrogen gas reacts with five volumes of dioxygen gas, f vapour would be: (A) 10(A) 10(B) 20(C) 48A 10.0 g samples of a mixture of calcium chloride and sodium chloride is t precipitate the calcium as calcium carbonate. This CaCO3 is heated to cc and the final mass of CaO is 1.62 gms. The % by mass of CaCl2 in the or			

CALCULATION OF n-Factor

11. 1.60g of a metal were dissolved in HNO₃ to prepare its nitrate. The nitrate on strong heating gives 2g oxide. The equivalent weight of metal is

(A) 16 (B) 32 (C) 48 (D) 12

12. Hydroxyl amine reduces iron (III) according to following equation

$$NH_2OH + Fe_2(SO_4)_3 \longrightarrow N_2(g) + H_2O + FeSO_4 + H_2SO_4$$

which statement is correct

- (A) n-factor for Hydroxyl amines is 1
- (B) equivalent weight of $Fe_2(SO_4)_3$ is M/2
- (C) 6 meq of $Fe_2(SO_4)_3$ is contained in 3 millimoles of ferric sulphate
- (D) all of these.

TYPES OF REDOX REACTIONS

13. How many moles of electron is needed for the reduction of each mole of Cr in the reaction,

$\operatorname{CrO}_5 + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Cr}_2 (\operatorname{SO}_4)_3 + \operatorname{H}_2 \operatorname{O} + \operatorname{O}_2$					
(A) 4	(B) 3	(C) 5	(D)7		

TITRATIONS

- 14. Equal volumes of 1 M each of KMnO₄ and K₂Cr₂O₇ are used to oxidize Fe(II) solution in acidic medium. The amount of Fe oxidized will be
 (A) more with KMnO₄
 (B) more with K₂Cr₂O₇
 (C) equal with both oxidizing agents
 (D) cannot be determined
- The normality of a mixture obtained by mixing 100 ml of 0.2 M H₂SO₄ with 100 ml of 0.2 M NaOH will be
 (A) 0.05 N
 (B) 0.1 N
 (C) 0.15 N
 (D) 0.2 N
- 16. A solution of $KMnO_4$ is reduced to MnO_2 . The normality of solution is 1.8. The molarity will be (A) 0.1 M (B) 0.6 M (C) 1.8 M (D) 0.3 M
- 17. Among the following which statement is not correct
 - (A) HNO₂ can act both as a reducing agent and as an oxidizing agent but HNO₃ acts only as an oxidizing agent.
 - (B) The oxidation number of phosphorus can vary from -3 to +5.
 - (C) The reaction between NaOH and H_2SO_4 is a redox reaction.
 - (D) Oxidation number can have positive, negative, zero or fractional values.

18.				$[CN)_6]$ into K ⁺ , Fe ³⁺ , Collection I react with 1 mole of K	O_3^{2-} and NO_3^{-} ions in acidic ₄ [Fe(CN) ₆]
	(A)	5 moles		(B) 9 moles	
	(C)	8 moles		(D) 30.5 moles	
19.		ming full decon nic mass of Ba =		$of CO_2$ released at ST	P on heating 9.85 g of $BaCO_3$
	(A)	0.84 L		(B) 2.24 L	
	(C)	4.06 L		(D) 1.12 L	
20.			of Ba(OH) ₂ solution is nolarity of the Ba(OH)		1) HCl. If 27.15 mL of HCl is
	(A)	0.166 M		(B) 0.180 M	
	(C)	0.333 M		(D) 0.666 M	
21.	Benz	ene diazonium c	hloride, $C_6H_5 N_2 C_1$,	was decomposed in the	presence of hypophosphorous
		-	evolved after drying v ken must be nearly	was found to be 36.9 ml	at one atmosphere and 27°C.
	(A)	481 mg		(B) 240 mg	
	(C)	210 mg		(D) 140 mg	
22.	Molari	ty of a 4% NaOH	I solution by weight ha	ving density 1.2 gm/ml	will be
	(a) 1.2	М	(b) 1.4 M	(c) 1.6 M	(d) 1.8 M
23.	Molari	ty of a 4% NaOH	l solution (weight/volu	me) will be	
	(a) 1.2	М	(b) 1.0 M	(c) 1.6 M	(d) 0.5 M
24.	Norma	lity of a 0.1 M H	$_{3}^{2}PO_{4}^{3}$ solution will be		
	(a) 0.2		(b) 0.4	(c) 0.3	(d) 0.05
25.	100 ml of 0.01 M H_2SO_4 is titrated against 0.2 M Ca(OH) ₂ , volume of Ca(OH) ₂ required to reach end point will be				
	(a) 5 m	1	(b) 10 ml	(c) 20 ml	(d) 15 ml

LEVEL - II

MOLES

- 26. The molar ratio of Fe⁺⁺ to Fe⁺⁺⁺ in a mixture of FeSO_4 and $\text{Fe}_2(\text{SO}_4)_3$ having equal number of sulphate ion in both ferrous and ferric sulphate is
 - (A) 1:2 (B) 3:2 (C) 2:3 (D) can't be determined
- 27. Calculate the number of oxygen atoms required to combine with 7g of N_2 to form N_2O_3 when 80% of N_2 is converted to N_2O_3 .
 - (A) 2.3×10^{23} (B) 3.6×10^{23} (C) 1.8×10^{21} (D) 5.4×10^{21}
- 28. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. The empirical formula, molar mass of the gas and molecular formula will be respectively (A) CH₂, 30, C₂H₄ (B) CH, 30, C₂H₂ (C) CH, 26, C₂H₂ (D) CH₂, 26, C₂H₄
- 29. Which of the following has least mass

(A) 2 g atom of nitrogen (B) 3×10^{23} atoms of C (C) 1 mole of S (D) 7.0 g of Ag

VOLUMETRIC & GRAVIMETRIC ANALYSIS

30.	Assuming fully decompo mass of Ba = 137) will b		eleased at STP on heating 9.85 g of $BaCO_3$ (Atomic		
	(A) 0.84 L	(B) 2.24 L	(C) 4.06 L	(D) 1.12 L	
31.		ed to make 2 litres of 0.2 N S			
32.	Volume of a gas at STP	is 1.12 × 10 ⁻⁷ cc. Calculat	e the number of molecule	es in it	
	(A) 3.01 × 10 ²⁰	(B) 3.01 × 10 ¹²	(C) 3.01 × 10 ²³	(D) 3.01 × 10 ²⁴	
33.	The mass of BaCO ₃ pro (A) 81 g	duced when excess CO ₂ is (B) 40.5 g	s bubbled through a solutio (C) 20.25 g	on of 0.205 mol Ba(OH) ₂ is (D) 162 g	

REDOX REACTIONS

34. Which reaction does not involve either oxidation nor reduction?

(a)	$VO^{2+} \rightarrow V_2O_3$	(b)	$Na \rightarrow Na^+$
(a)	$C O^{2-} + C O^{2-}$	(4)	a 2+ a

(c) $\operatorname{CrO}_{4}^{2-} \to \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$ (d) $\operatorname{Zn}^{2+} \to \operatorname{Zn}$

35. When KMnO₄ acts as an oxidizing agent and ultimately forms MnO₄²⁻, MnO₂, Mn₂O₃, Mn²⁺ then the number of electrons transferred in each case respectively is:
(a) 4, 3, 1, 5
(b) 1, 5, 3, 7
(c) 1, 3, 4, 5
(d) 3, 5, 7, 1

36.	5. The reaction $Cl_2 \rightarrow Cl^- + ClO_3^-$ is:	
	(a) Oxidation(b) Reduction(c) Disproportionation(d) Neither oxidation	n nor reduction
37.	7. One mole of N_2H_4 loses ten moles of electrons to from a new connitrogen appears in the new compound. What is the oxidation st change in the oxidation state of hydrogen:	mpound y. Assuming that all the ate of nitrogen in y. There is not
	(a) -1 (b) -3 (c) $+3$ (d)	+5
38.	3. 1 mol of ferric oxalate is oxidized by x mol of MnO_4^- and also 1 mo	ol of ferrous oxalate is oxidized
	by y mol of MnO_4^- in acidic medium. The ratio (x/y) is:	
	(a) 2:1 (b) 1:2 (c) 3:1	(d) 1:3
39.	9. 3×10^{-3} mole K ₂ Cr ₂ O ₇ reacts completely with 4.5×10^{-3} mole X ⁿ⁺	to give XO_3^- and Cr^{3+} . The value
	of n is: $() = 2$	(1) 4
40	(a) 3 (b) 1 (c) 0 A $(x^{1}, x^{2}, y^{2}, $	(d) 4 $(1 + 1)^{-1}$
40.	A certain ion X^{n+} is oxidized successively to XO_4^{2-} and then XO_4^{-} be the number of moles of the oxidizing agent required in the successively	
	ratio 4 : 1, n is:	ve steps of oxidation are in the
	(a) 3 (b) 1 (c) 2	(d) 4
CAI	ALCULATION OF n-FACTOR	
41.	1. In the following reaction (unbalanced) equivalent wt. of As_2S_3 is re	lated to molecular wt. M by:
	$As_2S_3 + H^+ + NO_3^- \rightarrow NO + H_2O + AsO_4^{3-} + SO_4^{2-}$	
	(a) M/2 (b) M/4 (c) M/28	(d) M/24
42.	2. In the reaction, $2CuSO_4 + 4KI \rightarrow Cu_2I_2 + 2K_2SO_4 + I_2$ the ratio of its molecular weight is:	equivalent weight of CuSO ₄ to
	(a) $1/8$ (b) $1/4$ (c) $1/2$	(d) 1
тіт	ITRATIONS	
43.	A 100 ml solution of 0.1 N HCl was titrated with 0.2 N NaOH solution after adding 30 ml of NaOH solution. The remaining titration was cor solution. The volume of KOH required for completing the titration is	npleted by adding 0.25 N KOH
	(A) 70 ml (B) 32 ml (C) 35 ml	(D) 16 ml
44.	4. A solution of 10 ml 0.1 M FeSO ₄ was titrated with KMnO ₄ solution of KMnO ₄ used will be:	n in acidic medium. The amount
	(a)5 ml of 0.1 M(b)10 ml of 0.1 M(c)10 ml of 0.5 M(d)10 ml of 0.02 M	I
45.	5. If equal volumes of 1M KMnO_4 and $1 \text{M K}_2 \text{Cr}_2 \text{O}_7$ solutions are all medium. The amount of iron oxidized will be:	llowed to oxidized Fe ²⁺ in acidic

	(a)) more by $KMnO_4$ solution		(b)	(b) more by $K_2 Cr_2 O_7$ solution		ion	
	(c)	(c) equal in both the cases		(d)	cannot be determ	ined		
46.	What volume of 0.1 M $KMnO_4$ is needed			to oxic	lize 100 mg of FeO	C_2O_4 in	acidic solution?	
	(a)	4.1 mL	(b)	8.2 mL	(c)	10.2 mL	(d)	4.6 mL
47.		nl 0.1 M KMnO ₄ i asured at NTP) ob			ss FeC	$_{2}O_{4}$ in presence of	² H ₂ SO	$_4$. The volume of CO ₂ gas
	(a)	448 ml	(b)	672 ml	(c)	224 ml	(d)	112 m <i>l</i>
48.	10.7	8 g of H ₃ PO ₄ in 55	50 mL so	olution is 0.4	40 N. T	Thus this acid:		
	(a)	has been neutral	ized to]	HPO_4^{2-}	(b)	has been neutrali	zed to	PO_{4}^{3-}
	(c)	has been reduce	d to HP	PO_3^{2-}	(d)	has been neutrali	zed to	$H_3PO_4^-$
VOI	LUMI	E STRENGTH C)FH,O,					
49.	The	labeling on a bottle		-	0 "vol"	, then the concentra	ation of	H_2O_2 in percentage
		ngth will be: 3.03 %	(B) 59	%		(C)4.55%		(D) 6.06 %
50.		t volume of H ₂ O ₂ so 00 mL		f 22.4 "vol" s 00 mL	trengt	n is required to liber (C) 100 mL	ate 224	40 mL of O ₂ at NTP ? (D) 500 mL
				L	EVEL	<u>III</u>		
51.	of 1 l	t volume of 1 M Fe M Fe(SCN) ₂ solutio 9.7 litre		e ³⁺ , SO ₄ ²⁻ , C			he com	plete oxidation of 100 ml (D) 1.1 litre
52.						consumes 10 ml of the ion is neutralized with iberated iodine requires 4^{2^2} ions in solution ?		
53.	where Ba(MnO ₄) ₂ itself reduces into Mn ²⁺ , than how many moles of Ba(MnO ₄) ₂ will react with 1 mole of					O_3^{-1} ions in acidic medium, A_2^{-1} will react with 1 mole of		
		e(CN) ₆] 5 moles	(B) 9	moles		(C) 8 moles		(D) 6.1 moles
54.	For 1	109% labeled oleur	n if the n	number of mo	oles of	H_2SO_4 and free SC	b_{3} be x a	and y respectively, then
	what	will be the value o	$f \frac{x+y}{x-y}$?				
	(A) 1		(B) 18			(C) 1/3		(D) 9.9

55. A sample of tap water contains 366 ppm of HCO_3^- ions with Ca^{2+} ion. Now it is removed by Clark's method by addition of $Ca(OH)_2$. Then what minimum mass of $Ca(OH)_2$ will be required to remove

	HCO - ions completely f	rom 500 a of como t	an water comple	
	HCO_3^{-1} ions completely fi (A) 1 g	(B) 0.4 g	(C) 0.222 g	(D) 0.111 g
56.				g with 100 mL of 56 'vol' strength mple? (Ba – 137, Mn – 55) (D) 68.18%
57.	HCI, where both convert	s into I ₂ . The liberat	ed I ₂ consumes certain vol	ith excess of KI in presence of lume of (0.1 M) $Na_2S_2O_3$, in basic O_3 (in mL) needed to reach the (D) 35
58.	The simplest formula of element Y (atomic mass (A) XY	•	ning 50% of element X (ato (C) XY ₃	mic mass 10) and 50% of $(D) X_2 Y_3$
59.	The number of water mc (A) 6.023×10^{19}	lecules present in a (B) 1.084 × 10 ¹⁸	drop of water (volume 0.00 (C) 4.84 × 10 ¹⁷	018 ml) at room temperature is (D) 5.023 × 10 ²³

MORE THAN ONE ANSWER QUESTIONS

Level-l

- 1. Which of the following solution (s) is $/ \operatorname{are} 0.2 \operatorname{N}?$
 - (A) 3g acetic acid dissolve in 250 ml water
 - (B) 5.7 gAl₂ (SO₄)₃ dissolve in 500 ml water
 - (C) 0.2 mole Ca(OH)₂ dissolve in one litter water
 - (D) 0.2 g equivalent of H_2SO_4 dissolve in 500 ml water
- 2. In which of the following compound(s) n-factor is more than 45 in redox reaction. Assuming all element in compound oxidized to it's maximum oxidation state

(A) K_4 [Fe(CN) ₆]	(B) Cu_2S
(C) Fe(SCN) ₃	(D) $K_2 [Cu(CN)_4]$

3. The oxidation number of Cr is +6 in :

(A) K_2CrO_4	(B) $K_2Cr_2O_7$	(C) KCrO ₃ Cl	(D) CrO_5
----------------	------------------	--------------------------	-------------

4. Dichromate ion in acidic medium oxidizes stannous ion as:

 $xSn^{2+} + yCr_2O_7^{2-} + zH^+ \longrightarrow aSn^{+4} + bCr^{3+} + cH_2O$

	(A) the value of $x : y$ is $1 : 3$	(B) the value of $x + y + z$ is 18
	(C) a : b is 3 : 2	(D) the value of $z - c$ is 7
5.	Mixture of 2 mol H_2SO_4 can be neutralized by	
	(A) 1 mol KOH	(B) $2 \mod \text{Ca(OH)}_2$
	(C) 4 mol NaOH	(D) 2 mol KOH
6.	$150 \mathrm{mL} \frac{\mathrm{M}}{\mathrm{10}} \mathrm{Ba}(\mathrm{MnO}_4)_2$ in acidic solution can o	xidize completely
	(A) $150 \text{ mL } 1 \text{ M Fe}^{2+}$	(B) 50 mL 1 M FeCrO ₄
	(C) 75 mL 1 M $C_2 O_4^{2-}$ ions	(D) 25 mL 1 M $K_2 Cr_2 O_7$ solution
	СООН СООК	
7.	соон соон	reducing agent. Then which of the following are
	the correct statements regarding	
	СООН СООК	
	and COOH COOH	
	(A) When both behaves as reducing agent, t molecular weight respectively	hen their equivalent weights are equal to half of their
	(B) 1000 mL of 1 N solution of each is neu	utralized by 1000 mL 1 N Ca(OH) ₂
	(C) 1000 mL of 1 M solution of each is new	utralized by 1000 mL of 1 M Ca(OH) ₂
	(D) 1000 mL of 1 M solution of each is oxi	idised by 200 mL 2 M of $KMnO_4$ in acidic medium
8.	x mmol of KIO_3 reacts completely with y mmol required for complete titration against this I_2 the	of KI to give I_2 quantitatively. If z mmol of hypo are en which relation is not correct?
	$(A) \qquad z = 6x$	(B) $6y = 5z$
	$(C) \qquad x = 5y$	(D) $x + y = 2z$
9.	phenolphthalein as indicator, when the colour c	n against a mixture of NaOH and Na_2CO_3 using hanges from pink to colourless, few drops of methyl s continued. Additional y ml of 0.01 N HCl were d y are possible?

- (A) x = 10, y = 130 (B) x = 148, y = 54
- (C) x = 36, y = 63 (D) x = 420, y = 140

10.	Dichromate ion in acidic medium oxidizes stannous ion as					
	$xSn^{2+} + yCr_2O_7^{2-} + zH^+ \rightarrow aSn^{4+} + bCr^{3+} + cH_2O$					
	(A)	The value of	x : y is 1 : 3	(B)	The value of x +	y + z is 18
	(C)	The value of	a:b is 3:2	(D)	The value of x –	c is 7
11.	2MnO ₄ - If the mo	+ 4H ⁺ + Br ₂ \mathbb{R}	red redox reaction, $2Mn^{2+} + 2BrO_3^{}$ InO_4^{-} , Br_2 be Mx, My IO_4^{-} is Mx/5	+ 2H ₂ O respectively, t	hen	
	(C) the n	valent wt. of Br n-factor ratio of e of these	₂ is My/10 Mn²⁺ to BrO ₃ ⁻ is 1 : 1			
12.	Fe ₂ O ₃ , th	nen which of the	ic compound $Fe_{0.95}O$ e following statement $Fe_{0.95}O$ is M/0.5 whe es of Fe^{3+} and Fe^{2+} 1 r	s are correct ?)	
	(C) The	number of mole	es of Fe ³⁺ and Fe ²⁺ in	1 mole of Fe _{0.9}	$_{5}$ O are 0.85 and 0.7	10 respectively
	(D) The respectiv	•	of Fe ²⁺ and Fe ³⁺ in th	e non stoichic	metric compound i	s 89.47% and 10.53%
13.	the mole are corre (A) equiv	cular weight of ect ? /alent wt. of Fe		₂ are M, M _x an (B) the mola	d M_{y} , then which of r ratio of FeS ₂ to O	
14.					2 0	Iution is made 1 litre. 20
17.		-	5	•		statements are correct.
	(A) the ti	tre reading of ⊦	ICI will be 40 mL, if pl	henolphthaleir	n is used indicator f	rom the very beginning
	(B) the ti	tre reading of ⊦	ICI will be 60 mL if ph	enolphthalein	is used indicator fr	om the very beginning.
	(C) the ti	itre reading of H	ICI will be 40 mL if th	e methyl oran	ge is used indicato	r after the 1 st end point
	(D) the ti	ire reading of H	Cl will be 80 mL, if m	ethyl orange is	s used as indicator	from the very beginning.
15.	150 mL	$\frac{M}{10}$ Ba(MnO ₄) ₂	in acidic can oxidize	completely		
	· · ·	mL 1M Fe ²⁺ IL 1M C ₂ O ₄ ²⁻		(B) 50 mL 1M (D) 25 mL 1M	$1 \text{ FeC}_2 \text{O}_4$ $1 \text{ K}_2 \text{Cr}_2 \text{O}_7 \text{ solution}$	
16.	Which of (A) Mola		uantities are depend (B) Normality	ent on tempera (C) Mo		(D) Mole fraction.

17. For the reaction : $H_3PO_4 + Ca(OH)_2 \longrightarrow CaHPO_4 + 2H_2O$ 1 mole 1 mole then which of the following statements are correct? (A) the equivalent weight of H_3PO_4 is 49. (B) the resulting solution is neutralized by 1 mole of KOH (C) 1 mole of H₃PO₄ is completely neutralized by 1.5 mole of Ca(OH)₂ (D) none 18. 1 mol of H₂SO₄ will exactly neutralize (A) 2 mol of ammonia (B) 1 mol of Ca(OH), (C) $0.5 \text{ mol of Ba(OH)}_2$ (D) 2 mol of NaOH During the titration of a mixture of NaOH, Na₂CO₂ and inert substances against HCI. 19. (A) Phenolphthalein is used to detect the end point when half equivalent of Na₂CO₃ and full equivalent NaOH is consumed (B) Phenolphthalein is used to detect the second end point (C) Methyl orange is used to detect the final end point (D) Methyl orange is used to detect the first end point The reaction, $3ClO^{-}(aq) \longrightarrow ClO^{-}_{3}(aq) + 2Cl^{-}(aq)$ is an example of 20. (A) Oxidation reaction (B) Reduction reaction (C) disproportionation reaction (D) Decomposition reaction

Level-II

21. 1 mole of a mixture of CO and CO_2 requires exactly 1 litre solution of 1 M NaOH for complete neutralization. If CO present in mixture is now converted to CO_2 and again the mixture is treated with NaOH, then after this conversion

(A) moles of CO, present initially in mixture = 1

(B) 2 litre NaOH solution of 1 M is more required for neutralization

(C) 2 litre solution of $\frac{1}{2}$ M NaOH is required more for neutralization

- (D) 56 g KOH in aqueous solution is required more for neutralization
- 22. 2 g of oleum is diluted with water. The solution was then neutralized by 432.5 mL of 0.1 N NaOH. Select the correct statements :

(A) % of oleum is 108.11	(B) % of free SO ₃ is 26.5 in oleum
(C) Equivalent of H_2SO_4 are 0.03	(D) Equivalent of SO ₃ = 6.625×10^{-3}

23.	Which one is not correct about $VO + Fe_2O$	$O_3 \rightarrow FeO + V_2O_5?$		
	(A) 2 mole of VO reacts completely with 5	mole of Fe ₂ O ₃		
	(B) 1 mole of VO reacts completely with 1	$.5 \operatorname{mole} \operatorname{of} \operatorname{Fe}_2 O_3$		
	(C) Eq. weight of $V_2O_5 = M/6$ and of Fe_2O_5	D_3 is M/2		
	(D) Eq. weight of VO = $M/3$ and of FeO is	s 2M/3		
24.	1 mole of H_3PO_3 reacts with NaOH in solut	tion. Select the correct statements.		
	(A) 1 mole of NaOH will replace NH^+ ion :	from H ₃ PO ₃		
	(B) 2 moles of NaOH will replace 2 NH ⁺ io	on from H ₃ PO ₃		
	(C) 3 moles of NaOH will replace 3 NH ⁺ is	on from H ₃ PO ₃		
	(D) On complete neutralization of H_3PO_3 , t	he equivalent weight of $H_3PO_3 = 41$		
25.	100 mL of 0.8 M NaOH are used to neutralized 100 mL solution obtained by passing 2.70 g SO_2Cl_2 in water. Select the correct statement			
	(A) The solution of SO_2Cl_2 has 0.2 M H_2SO_4 and 0.4 M HCl			
	(B) The volume ratio of NaOH used for H_2SO_4 and HCl is 1 : 2			
	(C) The volume ratio of NaOH used for H	$_2$ SO ₄ and HCl is 1 : 1		
	(D) Molarity of SO_2Cl_2 solution is 0.1 M			
26.	Which one are correct about the solution that contains $3.42 \text{ ppm Al}_2(SO_4)_3$ and $1.42 \text{ ppm Na}_2SO_4$?			
	(A) $[Al^{3+}] = [Na^{+}]$	(B) $[SO_4^{2-}] = [Na^+] = [Al^{3+}]$		
	(C) $[SO_4^{2-}] = [Na^+] + [Al^{3+}]$	(D) $[SO_4^{2-}] = [Na^+]$		
27.	100 mL of 0.1 M NaHC ₂ O ₄ is neutralized separately, then for complete neutralization	by V_1 mL of 0.1 M NaOH and V_2 mL of a M KMnO		
	(A) volume of NaOH required = 200 mL	(B) if M of KMnO ₄ is 0.1 M then $\frac{V_1}{V_2} = 5:1$		
	(C) if M of KMnO ₄ is 0.1 M then $V_2 = 20$ m	mL (D) if M of KMnO ₄ is 0.2 M then $V_2 = 2 \text{ mL}$		
28.		s 100 mL of 0.1 M KMnO $_4$ for complete neutralization se requires 50 mL of 0.2 M NaOH solution. Which one		
	(A) Mole ratio of $Na_2C_2O_4$ and $H_2C_2O_4 =$	4:1		
	(B) Equivalent ratio of $Na_2C_2O_4$ and H_2C_2	$O_4 = 4:1$		

BSC Academy

	(C) Moles of $C_2 O_4^{2-}$ in mixture = 25×10^{-3}	
	(D) Mole ratio of $Na_2C_2O_4$ and $H_2C_2O_4 = 1$: 4
29.	Quantitative estimation of Fe^{2+} can be made by be estimated by $KMnO_4$.	$KMnO_4$ in acidified medium. In which medium it can
	(A) $\ln H_2 SO_4$	(B) In HNO ₃
	(C) In HCl	(D) all of these
30.	Which one is not correct about the reaction	$: \operatorname{FeS}_2 \to \operatorname{Fe}_2\operatorname{O}_3 + \operatorname{SO}_2$
	(A) Eq. weight of FeS_2 is M/11	(B) Eq. wt. of $SO_2 = M/5$
	(C) 1 mole of FeS_2 requires 7/4 mole of O_2	(D) S has -2 oxidation sate in FeS ₂
Leve	I-III	
31.	0.220 g of a gas occupies a volume of 112 ml gas can be	at a pressure of 1 atm and temperature of 273 K. The
	(A) Nitrogen	(B) nitrous oxide
	(C) carbon dioxide	(D) propane
32.	Which of the following contains the same num	iber of molecules?
	(A) 1 g of O_2 , 2 g of SO_2	(B) 1 g of CO_2 , 1 g of N_2O
	(C) 112 ml of O_2 at STP, 224 ml of He at 0.5	atm and 273 K
	(D) 1 g of oxygen, 1 g of ozone	
33.	0.2 mol of Na ₃ PO ₄ and 0.5 mole of Ba(NO ₃) ₂ is/are correct about this system.	are mixed in 1L of solution. Which of the following
	(A) 0.2 mol of barium phosphate precipitate i	s obtained
	(B) 0.1 mol of barium phosphate precipitate is	s obtained
	(C) Molarity of Ba ²⁺ ions in the resulting solut	tion is 0.2
	(D) Molarities of Na ⁺ and NO $_3^-$ ions are 0.6 a	and 1.0 respectively.
34.	0.5 mole of sodium nitrite and 1 mole of amn solution is heated and the evolved gas is colle	nonium chloride are mixed in aqueous solution. The cted. Then which is/are correct about the gas/
	(A) 22.4 L gas at STP	(B) 11.2 L of gas at STP
	(C) 0.5 mole of gas	(D) 14 g of gas

- 35. 100 ml of mixture of CO and CO_2 is mixed with 30 ml of oxygen and sparked in a eudiometer tube. The residual gas after treatment with aqueous KOH has a volume of 10 ml which remains unchanged when treated with alkaline pyrogallol. If all the volumes are under the same conditions, point out the correct options.
 - (A) The volume of CO that reacts, is 60 ml
 - (B) The volume of CO that remains unreacted, is 10 ml
 - (C) The volume of O_2 that remains unreacted, is 10 ml
 - (D) The volume of CO₂ that gets absorbed by aqueous KOH, is 90 ml.

Passage-I

All such titration which involves the direct titration of lodine with a reducing agent are grouped under lodimetry. lodimetry is employed to determine the strength of reducing agent such as sodium thio sulphate

$$I_2 + Na_2S_2O_3 \longrightarrow I^- + S_4O_6^{--}$$

If iodine is liberated as a result of chemical reaction involving oxidation of an iodide ion by a strong oxidizing agent in neutral or acidic medium the liberated iodine is then titrated with reducing agent. Iodometry is used to estimate the strength of oxidizing agent.

For example the estimation of Cu⁺⁺ with thiosulphate.

$$Cu^{++} + I^{-} \longrightarrow Cu_{2}I_{2} + I_{2}$$
$$I_{2} + S_{2}O_{3}^{--} \longrightarrow S_{4}O_{6}^{--} + I^{-}$$

Starch used as indicator near the end point which form blue colour complex with I_3^- . The blue colour disappears when there is no more of free I_2 .

- 1. In lodine titration lodine remains in solution in the form of
 - (A) I_3^- (B) I_2 (C) I_3^+ (D) I_2^-
- In the reaction, 2CuSO₄ + 4KI → Cu₂I₂ + 2K₂SO₄ + I₂ the ratio of equivalent weight of CuSO₄ to its molecular weight is:

- 3. When 159.50g of $CuSO_4$ in a solution is reacted with KI, then the liberated iodine required 100 ml 1 M $Na_2S_2O_3$ for complete reaction, then what is the percentage purity of sample used in making the solution.
 - (A) 10% (B) 20% (C) 5% (D) None of these

4.	100 ml of 0.1 N hypo decolourised iodine by the addition of x g of crystalline blue vitriol to excess of KI.
	The value of x is

(A) 5g (B) 2.5g (C) 10g (D) 1.25g

Passage-II

Like acid base titration, in redox titration also, the equivalence point is reached when the reducing agent is completely oxidized by the oxidizing agent. But contrary to the acid-base titrations, oxidizing agents can themselves be used as internal indicator in redox titration e.g. $Cr_2O_7^{2-}$ (orange yellow), Cr^{3+} (green), MnO_4^{-} (purple), Mn^{2+} (light pink), where strength of the solution may be expressed as molarity i.e. number of moles of solute per litre of solution.

5. In a titration experiment, a student finds that 23.48 ml of a NaOH solution are needed to neutralize 0.5468g of KHP (molecular formula $KHC_{g}H_{d}O_{d}$). What is the concentration in molarity of NaOH solution?

6. A 16.42 ml volume of $0.1327M \text{ KMnO}_4$ solution is needed to oxidize 25.00 ml of a FeSO₄ solution in an acidic medium. What is the number of moles of FeSO₄ being oxidized for the reaction

(A) 2.18×10^{-2} (B) 1.09×10^{-2} (C) 0.545×10^{-2} (D) 0.272×10^{-2}

7. A purple coloured solution is added from a burette to $FeSO_4$ solution kept in the flask. After sometime, the purple colour changes to light pink. The ion formed from that solution is

(A) MnO_4^-	(B)) Fe ²⁺	(0) Fe ³⁺	(1	D) Mn ²⁺
(1) (1) (1) (1) (1)		,	(~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(•	2,10111

8. Concentrated aqueous sulphuric acid is 98% H_2SO_4 by mass and has a density of 1.84 g/ml. What volume of the concentrated acid is required to make 5 litre of 0.50M H_2SO_4 solution.

(A)	271.7 ml	(B) 13.5 ml	(C) 135.85 ml	(D) 27.1 ml
-----	----------	-------------	---------------	-------------

Passage-III

lodine titrations: Compounds containing iodine are widely used in titrations, commonly known as iodine titration. It is of two kinds:

- (i) lodometric titrations
- (ii) lodimetric titrations.

(i) **lodometric titrations** : It is nothing but an indirect method of estimating the iodine. In this type of titration, an oxidizing agent is made to react with excess of KI, in acidic medium or, basic medium in which I⁻ oxidizes into I₂. Now the liberated I₂ can be titrated with Na₂S₂O₃ solution.

KI $\xrightarrow{\text{Oxidising Agent}}$ $I_2 \xrightarrow{\text{Na}_2 S_2 O_3 / H^+}$ $I^- + \text{Na}_2 S_4 O_6$

Although solid I₂ is black and insoluble in water, but it converts into soluble I₃ ions

 $I_2(s) + I^- \square \square \square I_3^-$

Black

dark brown

	gives blue colour with starch. The completion	t or equivalence point. Even small amount of I_2 molecules, of the reaction can be detected when blue colour disappears ength of reducing agent is determined by reacting it with I_2 .
9.	with 50 mL (1M) $Na_2S_2O_3$ in basic medium, we then what will be the % purity of $CuSO_4$ in satisfies	
	(A) 60% (B) 75%	(C) 50% (D) 95%
10.		in presence of H ⁺ , then it produces I_2 . Now I_2 is n in basic medium, where it converts into $SO_4^{2^2}$ ions. Then he end point of the reaction? (C) 1500 mL (D) 750mL.
11.	resulting solution is neutralized with K_2CO_3 , t 25 mL M/10 Na ₂ S ₂ O ₃ in acidic solution, then and C ₂ O ₄ ²⁻ ions in the solution ?	which on titration with M/10 KMnO_4 requires 50 mL. The hen treated with excess of KI. M The liberated I ₂ required what is the difference of the number of m mole of Cu ²⁺
	(A) 40 (B) 10	(C) 30 (D) 50
12.	When 1.66 g of KI is reacted with excess of K	O_3 in presence of dil. HCl, then I_2 is produced. The amount
	of KIO_3 reacted and the I_2 formed are respectively the respective to the respective terms of	tively.
	(A) $4\times10^{\text{-2}}\text{mole},3\times10^{\text{-3}}\text{mole}$	(B) 1.5×10^{-2} mole, 5×10^{-3} mole
	(C) 5×10^{-2} mole, 1.5×10^{-3} mole	(D) 2×10^{-3} mole, 6×10^{-3} mole.
Mato	h the Column	
1.	Match the column Column – I (Reaction)	Column – II (Equivalent weight)
	(a) $NH_3 \longrightarrow NO_3^-$	(p) M/3
	(b) $\operatorname{FeC}_2O_4 \longrightarrow \operatorname{Fe}^{3+} + 2\operatorname{CO}_3^{2-}$	(q) M/6
	(c) $H_2SO_5 \longrightarrow S_8$	(r) M/8
	(d) $KMnO_4 \longrightarrow Mn^{2+}$	(s) M/5
	•	(t) reducing agent
2.	Match the column Column – I (Acid) (a) H_3PO_4 (b) H_3PO_3 (c) H_3BO_3 (d) EDTA	Column – II (Nature) (p) Monobasic (q) pentabasic (r) Tri basic (s) Tetra basic (t) Dibasic
3.	Match the following	
	Column – I	Column – II
	(a) KMnO ₄ $\xrightarrow{H^+}$ Mn ⁺²	(p) M/2
	(b) $MgC_2O_4 \longrightarrow Mg^{2+} + CO_2$	(q) M/5
	(c) $K_2 Cr_2 O_7 \longrightarrow Cr^{+3}$	(r) M/6
	(d) $\operatorname{CrO}_5 \longrightarrow \operatorname{Cr}_2 \operatorname{O}_3$	(s) M/3
		(t) Oxidising agent

ASSERTION/ REASON

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement – 1.
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement – 1.
- (C) Statement 1 is True, Statement 2 is False.
- (D) Statement 1 is False, Statement 2 is True.
- 1. **STATEMENT 1:** In the titrations of Na_2CO_3 with HCl using methyl orange indicator, the volume required at the equivalence point is twice that of acid required using phenolphthalein indicator.

STATEMENT - 2: Two moles of HCl are required for complete neutralization of one mole of Na₂CO₃.

2. STATEMENT – 1: The molality of the solution does not change with temperature

STATEMENT - 2: The molality is expressed in units of moles per 1000 gm of solvent.

3. **STATEMENT – 1**: In the roasting of FeS₂, ore is converted into ferric oxide and SO₂ gas. The equivalent mass of FeS₂ is equal to molecular weight /11.

STATEMENT - 2: The n-factor for reducing agent is total net change in oxidation number per formula unit.

4. STATEMENT-1: Molarity and molality of solution change with temperature

STATEMENT-2: On changing temperature the density of the solution is changed

5. **STATEMENT-1:** Atomic wt. of P atom in the molecule P_xO_y is $\frac{2yE_p}{x}$ where E_p is the equivalent mass of P atom

STATEMENT-2 : The n factor of P is = $\frac{X}{V}$

6. STATEMENT-1: 109% H₂SO₄ represent a way to express concentration of industrial H₂SO₄

because

STATEMENT-2 : It represents that 9g H_2O reacts with 40g SO_3 to produce 49g H_2SO_4 in addition to 100g H_2SO_4

- STATEMENT-1: The percentage of nitrogen in urea is 46.6%
 STATEMENT-2: Urea is a covalent compound.
- 8. **STATEMENT-1:** Molarity and molality of a solution both change with density.

STATEMENT-2: Density of a solution changes when percentage by mass of a solution changes.

9. **STATEMENT-1** : H_3PO_3 is a dibasic acid and it's salt Na_3PO_3 does not exists

STATEMENT-2: Being dibasic nature, only two H are replaceable.

10. **STATEMENT-1**: Addition of water to a solution containing solute and solvent changes it's normality or molarity.

STATEMENT-2: The milliequivalent and millimoles of the solute are not changed on dilution.

INTEGER ANSWER TYPE QUESTIONS

- 1. 0.01 mole of FeS_n (iron (II) sulphide) required 0.06 mole of AO $_4^{3-}$ for complete oxidation. The species formed are FeO, SO₂ and A²⁺. Calculate the value of n.
- 2. A solution containing 2.68 × 10⁻³ mol of Aⁿ⁺ ions requires 1.61 × 10⁻³mol of MnO_4^{-1} for the complete oxidation of Aⁿ⁺ to AO_3^{-1} in acidic medium. What is the value of n ?
- 3. Haemoglobin contains 0.25% iron by weight. The molecular weight of Haemoglobin is 89600. Calculate the no. of iron atom per molecule of Haemoglobin.
- 4. Copper forms two oxides. For the same amount of copper, twice as much oxygen was used to form first oxide than to form second one. If valence of Cu in I oxide is 2, then find the valence of Cu in second oxide ?
- 5. 1.575 g of oxalic acid (COOH)₂. xH₂O are dissolved in water and the volume made upto 250 mL. On titration 16.68 mL of this solution requires 25mL of N/15 NaOH solution for complete neutralization. Calculate x.
- 6. What is the oxidation number of Cr in $K_2Cr_2O_2$? (Need to answer the integer part only).
- 7. One mole of N_2H_4 loses 10 moles of electrons to form a new compound Y. Assuming that all nitrogen appears in the new compound, what is the oxidation number of nitrogen in Y (there is not change in the oxidation state of hydrogen). (Need to answer the integer part only).
- 8. 0.63 g of dibasic acid was dissolved in water. The volume of the solution was made 100 mL. 2 mL of this acid solution required 10 mL $\frac{N}{5}$ NaOH solution. What is the normality of acid.
- 9. A solution of H_2O_2 is titrated against a solution of $KMnO_4$. The reaction is

 $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O_2 + 8H_2O_2$

If it requires 46.9 mL of 1.45 M KMnO₄ to oxidize 20 g of H_2O_2 , find the approximate mass percentage of H_2O_2 in this solution.

10. Find the amount of caustic soda (in gram) required for complete neutralization of 100 mL 1 N HCl.

SUBJECTIVE QUESTIONS

- 1. Calculate the weight of MnO_2 and the volume of HCl of specific gravity 1.2 gml⁻¹ and 4% nature by weight needed to produce 1.78 litre of Cl₂ at STP by the reaction. $MnO_2 + 4$ HCl \longrightarrow $MnCl_2 + 2H_2O + Cl_2$
- 2. A solution of H_2O_2 , labeled as '20 volumes' was left open. Due to this some H_2O_2 decomposed and the volume strength of the solution decreased. To determine the new volume strength of the H_2O_2 solution, 10 mL of the solution was taken and it was diluted to 100 mL. 10mL of this diluted solution was titrated against 25 mL of 0.0245 M KMnO₄ solution under acidic condition. Calculate the volume strength of the H_2O_2 solution.
- 3. A 2.0 g sample of a mixture containing sodium carbonate, sodium bicarbonate and sodium sulphate is heated till the evolution of CO₂ ceases. The volume of CO₂ at 750 mm Hg pressure and at 298 K is measured to be 123.9 mL. A 1.5 g of the sample requires 150 mL of M/10 HCl for complete neutralization. Calculate the percentage composition of the components of the mixture.
- 4. One litre of a mixture of O₂ and O₃ at STP was allowed to react with an excess of acidified solution of KI. The iodine liberated required 40 mL of M/10 sodium thiosulphate solution for titration. What is the mass per cent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture.
- 5. Potassium selenate is isomorphous with potassium sulphate and contains 45.52% selenium by weight. Calculate the atomic weight of selenium. Also report the equivalent weight of potassium selenate.
- 6. Borax in water gives:

$$B_4O_7^2 + 7H_2O \longrightarrow 4H_3BO_3 + 2OH^2$$

How many gram of borax (Na2B4O7.10H2O) are required to?

a) Prepare 50 mL of 0.2 M solution

b) neutralize 25 mL of 0.1934 M of HCl and H_2SO_4 separately

- 7. For estimating ozone in the air, a certain volume of air is passed through an acidified or neutral KI solution when oxygen is evolved and iodide is oxidized to give iodine. When such a solution is acidified, free iodine is evolved which can be titrated with standard $Na_2S_2O_3$ solution. In an experiment, 10 litre of air at 1 atm and 27°C were passed through an alkaline KI solution, at the end, the iodine entrapped in a solution on titration as above required 1.5 mL of 0.01 N $Na_2S_2O_3$ solution. Calculate volume % of O_3 in sample.
- 8. 1.249 g of a sample of pure BaCO₃ and impure CaCO₃ containing some CaO was treated with dil.HCl and it evolved 168 ml of CO₂ at NTP. From this solution, BaCrO₄ was precipitated, filtered and washed. The precipitate was dissolved in dilute sulphuric acid and diluted to 100 ml. 10 ml of this solution, when treated with KI solution, liberated iodine which required exactly 20 ml of 0.05 N Na₂S₂O₃. Calculate the percentage of CaO in the sample.
- 9. In a quality control analysis for sulphur impurity 5.6g steel sample was burnt in a stream of oxygen and sulphur was converted into SO₂ gas. The SO₂ was then oxidized to sulphate by using H₂O₂ solution to which had been added 30 mL of 0.04M NaOH. The equation for reaction is:

$$SO_{2(g)} + H_2O_{2(aq)} + 2OH_{(aq)} \longrightarrow SO_4^{2-}(aq) + 2H_2O_{(l)}$$

22.48 mL of 0.024M HCl was required to neutralize the base remaining after oxidation reaction. Calculate % of sulphur in given sample.

- 10. A granulated sample of aircraft alloy (AI, Mg, Cu) weighing 8.72g was first treated with alkali and then with very dilute HCI, leaving a residue. The residue after alkali boiling weighed 2.10g and the acid insoluble residue weighed 0.69g. What is the composition of the alloy?
- 11. 2.480g of KCIO₃ are dissolved in conc. HCl and the solution was boiled. Chlorine gas evolved in the reaction was then passed through a solution of Kl and liberated iodine was titrated with 100 mL of hypo. 12.3 mL of same hypo solution required 24.6 mL of 0.5 N iodine for complete neutralization. Calculate % purity of KCIO₃ sample.
- 12. P and Q are two elements which forms P_2Q_3 and PQ_2 . If 0.15 mole of P_2Q_3 weights 15.9g and 0.15 mole of PQ_2 weights 9.3g, what are atomic weights of P and Q?
- 13. 25 mL of a solution containing Fe^{2+} and Fe^{3+} sulphate acidified with H_2SO_4 is reduced by 3g of metallic zinc. The solution required 34.25 mL of N/10 solution of $K_2Cr_2O_7$ for oxidation. Before reduction with zinc, 25 mL of the same solution required 22.45 mL of same $K_2Cr_2O_7$ solution. Calculate the strength of $FeSO_4$ and $Fe_2(SO_4)_3$ in g/litre of solution.
- 14. 50 mL solution of H_2O_2 was treated with excess KI (s) and the solution was acidified with acetic acid. The liberated iodine required 40 mL 0.5 M Na₂S₂O₃ solution for the end point using starch as indicator. Find the "molarity" and "volume strength" of the H_2O_2 solution.
- 15. 2.0g sample of KMnO₄ (MW = 158) containing some inert materials was dissolved in water acidified with H_2SO_4 resulting solution was treated with 62 mL 0.5 M oxalic acid solution. The excess of oxalic acid was back titrated with 20 mL 0.1 M K₂Cr₂O₇. Calculate percent purity of KMnO₄ sample.

PREVIOUS YEAR IIT-JEE QUESTIONS

1.	The oxidation number of phosphorus in $Ba(H_2PO_2)_2$ is				
	(A)+3	(B)+2			
	(C) +1	(D)-1		[IIT 1991]	
~		. 1 1	1 . 0.1		

2. The oxidation states of the most electronegative element in the products of the reaction, BaO_2 will dil.H₂SO₄ is

(A) 0 and -1	(B) -1 and -2	
(C) - 2 and 0	(D) -2 and -1	[IIT 1991]

3. Read the following statement and explanation and answer as per the options given below :

Statement-1 : In the titration of Na_2CO_3 with HCl using methyl orange indicator, the volume required at the equivalence point is twice that of the acid required using phenolphthalein indicator.

Statement-2: Two moles of HCl are required for the complete neutralization of one mole of Na₂CO₃.

[IIT 1991

4. For the redox reaction : $2MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$, the correct coefficients of the reactants for the balanced reaction are

	MnO_4^-	$C_2 O_4^{2-}$	H^{+}	
(A)	2	5	16	
(B)	16	5	2	
(C)	5	16	2	
(D)	2	16	5	[IIT 1992]

5.	The number of moles of $KMnO_4$ that will be needed to react completely with one mole of ferrous oxalate in acidic solution is			
	(A) $\frac{3}{5}$ (C) $\frac{4}{5}$	(B) $\frac{2}{5}$		
	(C) $\frac{4}{5}$	(D) 1	[IIT 1997]	
6.	The normality of 0.3 M phosphorous acid (H_3PO_3) is			
	(A) 0.1	(B) 0.9		
	(C) 0.3	(D) 0.6	[IIT 1999]	
7.	The oxidation number of sulphur in S_8, S_2F_2, H_2S respectively, are			
	(A) 4,2,3	(B) 0,3,2		
	(C) 0,1,–2	(D) 0,-2,-2	[IIT 1999]	
8.	Amongst the following identify the species with an atom in +6 oxidation state			
	$(A) MnO_4^-$	(B) $Cr(CN)_{6}^{3-}$		
	(C) NiF_{6}^{2-}	$(D) CrO_2Cl_2$	[IIT 2000]	
9.	The reaction, $3ClO^{-}(aq) \rightarrow ClO_{3}^{-}(aq) + 2Cl^{-}(aq)$, is a example of			
	(A) oxidation reaction	(B) reduction reaction		
	(C) disproportionation reaction	(D) decomposition reaction		
10.	An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 ml. The volume of 0.1 N NaOH required to completely neutralize 10 ml of this solution is			
	(A) 40 ml	(B) 20 ml		
	(C) 10 ml	(D) 4 ml	[IIT 2001]	
11.	In the standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by iodometry, the equivalent weight of $K_2Cr_2O_7$ is			
	(A) (molecular weight)/2	(B) (molecular weight)/6		
	(C) (molecular weight)/6	(D) same as molecular weight	[IIT 2001]	
12.	How many moles of electron weight one kilogram?			
	(A) 6.023×10^{23}	(B) $\frac{1}{9.108} \times 10^{31}$		
	(C) $\frac{6.023}{9.108} \times 10^{54}$	(D) $\frac{1}{9.108 \times 6.023} \times 10^8$	[IIT 2008]	
13.	Which has maximum number of atoms?			
	(A) 24 g of C(12)	(B) 56 g of Fe(56)		
	(C) 27 g of Al(27)	(D) 108 g of Ag (108)	[IIT 2003]	

14.	Mixture $X = 0.02 \text{ mol of} [Co(NH_3)_5 SO_4]$ Br and 0.02 mol of $[Co(NH_3)_5 BNr]SO_4$ was prepared in 2 litre of solution.				
	1 litre of mixture X + excess AgNO ₃ \rightarrow Y.				
	1 litre of mixture X + excess $BaCl_2 \rightarrow Z$.				
	(A) 0.01, 0.01	(B) 0.02, 0.01			
	(C) 0.01, 0.02	(D) 0.02, 0.02	[IIT 2003]		
15.	The pair of the compounds in which both the metals are in the highest possible oxidation state is				
	(A) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$	(B) $\operatorname{CrO}_2\operatorname{Cl}_2$, MnO_4^-			

(C) TiO_3 , MnO_2 (D) $[Co(CN)_6]^{3-}$, MnO_3 [IIT 2004]

16. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is

- (A) 3 (B) 4
- (C) 5 (D) 6 [IIT 2007]

Subjective Type Questions

- 1. A solid mixture (5.0 g) consisting of lead nitrate and sodium nitrate was heated below 600°C until the weight of the residue was constant. If the loss in weight is 28.0 per cent, find the amount of lead nitrate and sodium nitrate in the mixture. [IIT 1990]
- 2. Calculate the molality of 1 litre solution of 93% H₂SO₄ (weight/volume). The density of the solution is 1.84 g/ml. [IIT 1990]
- 3. A solution of 0.2 g of a compound containing Cu^{2+} and $C_2O_4^{2-}$ ions on titration with 0.02 M KMnO₄ in presence of H₂SO₄ consumes 22.6 ml. of the oxidant. The resultant solution is neutralized with Na₂CO₃, acidified with dil. acetic acid and treated with excess KI. The liberated iodine requires 11.3 ml of 0.05 M Na₂S₃O₃ solution for complete reduction. Find out the molar ratio of Cu²⁺ to $C_2O_4^{2-}$ in the compound. Write down the balanced redox reactions involved in the above titrations.

[IIT 1991]

- 4. A 1.0 g sample of Fe_2O_3 solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100.0 ml. An aliquot of 25.0 ml of this solution requires 17.0 ml of 0.0167 M of solution of an oxidant for titration. Calculate the number of electrons taken up by the oxidant in the reaction of the above titration. [IIT 1991]
- 5. A 2.0 g sample of a mixture containing sodium carbonate, sodium bicarbonate and sodium sulphate is gently heated till the evolution of CO_2 ceases. The volume of CO_2 at 750 mm Hg pressure and at 298 K is measured to be 123.9 ml. A 1.5 g of the same sample requires 150 ml of (M/10) HCl for complete neutralization. Calculate the % composition of the components of the mixture.

[IIT 1992]

- 6.One gram of commercial AgNO3 is dissolved in 50 ml. of water. It is treated with 50 ml. of a KI solution. The silver iodide thus precipitated in filtered off. Excess of KI in the filtrate is titrated with (M/10) KIO3 solution in pressure of 6 M HCl till all Γ ions are converted into ICl. It requires 50 ml. of (M/10) KIO3 solution. 20 ml of the same stock solution of KI requires 30 ml. of (M/10) KIO3 under similar conditions. Calculate the percentage of AgNO3 in the sample.(IIIT 1992]
- Upon mixing 45.0 ml. of 0.25 M lead nitrate solution with 25.0 ml of 0.10 M chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed? Also, calculate the molar concentrations of the species left behind in the final solution. Assume that lead sulphate is completely insoluble. [IIT 1993]
- 8. The composition of a sample of Wustite is Fe_{0.93}O_{1.00}. What percentage of the iron is present in the form of Fe(III)? [IIT 1994]
- 9. 8.0575×10^{-2} kg of Glauber's salt is dissolved in water to obtain 1 dm³ of a solution of density 1077.2 kg m⁻³. Calculate the molarity, molality and mole fraction of Na₂.SO₄ in the solution.

[IIT 1994]

10. A 3.00 g sample containing Fe_3O_4 , Fe_2O_3 and an inert impure substance, is treated with excess of KI solution in presence of dilute H_2SO_4 . The entire iron is converted into Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to 100 ml. A 20 ml of the diluted solution requires 11.0 ml of 0.5 M Na₂S₂O₃ solution to reduce the iodine present. A 50 ml of the diluted solution, after complete extraction of the iodine requires 12.80 ml of 0.25 M KMnO₄ solution in dilute H_2SO_4 medium of the oxidation of Fe^{2+} . Calculate the percentage of Fe_2O_3 and Fe_3O_4 in the original sample.

[IIT 1996]