Stoichiometry: Question

Conceptual Questions 2
Single Correct Choice Questions 3
Level-I 3
Level-II 6
Level-III 8
More Than One Answer Questions 9
Level-I 9
Level-II 12
Level-III 14
Passage 15
Passage-I 15
Passage-II 16
Passage-III 16
Match The Column 17
Assertion/Reason Questions 18
Integer Answer Type Questions 19
Subjective Questions 20
Previous Year IIT-JEE Questions 21

CONCEPTUAL QUESTIONS

MOLE:

1. How many moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium are required to react completely with one mole of $\mathrm{KHC}_{2} \mathrm{O}_{4}$
(A) $2 / 3$
(B) $1 / 3$
(C) 3
(D) 6

OXIDATION NUMBER

2. Sulphur has highest oxidation state in
(A) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(B) SO_{2}
(C) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(D) $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
3. In which of the following compound transition metal has zero oxidation state
(A) CrO_{5}
(B) $\mathrm{NH}_{2} . \mathrm{NH}_{2}$
(C) $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$
(D) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$

TYPE OF REDOX REACTIONS

4. Consider the following reactions:
(i) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ \qquad CO_{2}
(ii) $\mathrm{SO}_{4}{ }^{2-}$ \qquad $\mathrm{SO}_{3}{ }^{2-}$
(iii) $\mathrm{MnO}_{4}{ }^{2-} \longrightarrow \mathrm{MnO}_{4}^{-}$
(iv) $\mathrm{Fe}^{3+} \longrightarrow \mathrm{Fe}^{2+}$

Choose the correct answer:-
(A) (i) \& (ii) shows oxidation
(B) (iii) \& (iv) shows reduction
(C) (i) \& (iii) shows oxidation
(D) (iii) \& (iv) shows oxidation
5. In the reaction $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$, Chlorine is
(A) oxidized
(B) reduced
(C) oxidized as well as reduced
(D) neither oxidized nor reduced
6. Which of the acid has oxidizing as well as reducing properties?
(A) HNO_{3}
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) HCl
(D) HNO_{2}

7 Which of the following is disproportionation reaction:
(A) $2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+}$ \qquad $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
(B) $3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-}$ \qquad $5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(D) none of these
8. In the following reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
(A) Bromine is oxidized and carbonate is reduced
(B) Bromine is reduced and water is oxidized
(C) Bromine is neither reduced nor oxidized
(D) Bromine is both reduced and oxidized
9. Which of the following are not examples of disproportionation reaction
(A) $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Ag}^{+}+2 \mathrm{NH}_{4}^{+}$
(B) $\mathrm{Cl}_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
(D) $2 \mathrm{HCuCl}_{2} \xrightarrow{\text { dilute with } \mathrm{H}_{2} \mathrm{O}} \mathrm{Cu}+\mathrm{Cu}^{2+}+4 \mathrm{Cl}^{-}+2 \mathrm{H}^{+}$

Calculation of \mathbf{n}-Factor

10. For the reaction: $2 \mathrm{FeS}_{2}+\frac{11}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}$

What will be the equivalent weight of FeS_{2}, if the molecular weight of FeS_{2} is M ?
(A) $\frac{\mathrm{M}}{8}$
(B) M
(C) $\frac{\mathrm{M}}{11}$
(D) Can't be calculated

SINGLE CORRECT CHOICE

LEVEL-I

MOLES

1. The number of moles of CaCl_{2} needed to react with excess of AgNO_{3} to produce 4.31 gram of AgCl .
(A) 0.030
(B) 0.015
(C) 0.045
(D) 0.060
2. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s})+$ $2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$.

The mass of CaCO_{3} is required to react completely with 25 mL of 0.75 M HCl is
(A) 0.1 g
(B) 0.5 g
(C) 1.5 g
(D) 0.94 g
3. Chlorine is prepared in the laboratory by treating manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ with aqueous hydrochloric acid according to the reaction
$4 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})$
The grams of HCl react with 5.0 g of manganese dioxide will be [at.mass of $\mathrm{Mn}=55$]
(A) 84 g
(B) 0.84 g
(C) 8.4 g
(D) 4.2 g
4. $\quad 25.4 \mathrm{~g}$ of iodine and 12.2 g of chlorine are made to react completely to yield a mixture of ICl and ICl_{3}. Calculate the ratio of moles of ICl and ICl_{3}.
(A) $1: 1$
(B) $1: 2$
(C) $1: 3$
(D) $2: 3$
5. Calculate the weight of iron which will be converted into its oxide by the action of 18 g of steam on it.
(A) 37.3 gm
(B) 3.73 gm
(C) 56 gm
(D) 5.6 gm
6. It takes 0.15 mole of ClO^{-}to oxidize 12.6 g of chromium oxide of a specific formula to $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} . \mathrm{ClO}^{-}$ became Cl^{-}. The formula of the oxide is (atomic weight $\mathrm{Cr}=52, \mathrm{O}=16$)
(A) CrO_{3}
(B) CrO_{2}
(C) CrO_{4}
(D) CrO
7. 8 g of sulphur is burnt to form SO_{2} which is oxidized by Cl_{2} water. The solution is treated with BaCl_{2} solution. The amount of BaSO_{4}, precipitate is
(A) 1 mole
(B) 0.5 mole
(C) 0.24 mole
(D) 0.25 mole
8. 25.0 ml of HCl solution gave, on reaction with excess AgNO_{3} solution 2.125 g of AgCl . The normality of HCl solution is
(A) 0.25
(B) 0.6
(C) 1.0
(D) 0.75

GRAVIMETRIC ANALYSIS

9. If ten volumes of dihydrogen gas reacts with five volumes of dioxygen gas, how many volumes of water vapour would be:
(A) 10
(B) 20
(C) 48
(D) 12
10. A 10.0 g samples of a mixture of calcium chloride and sodium chloride is treated with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to precipitate the calcium as calcium carbonate. This CaCO_{3} is heated to convert all the calcium to CaO and the final mass of CaO is 1.62 gms . The $\%$ by mass of CaCl_{2} in the original mixture is
(A) 15.2\%
(B) 32.1%
(C) 21.8%
(D) 11.7%

CALCULATION OF n-Factor

11. 1.60 g of a metal were dissolved in HNO_{3} to prepare its nitrate. The nitrate on strong heating gives 2 g oxide. The equivalent weight of metal is
(A) 16
(B) 32
(C) 48
(D) 12
12. Hydroxyl amine reduces iron (III) according to following equation

$$
\mathrm{NH}_{2} \mathrm{OH}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \longrightarrow \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}
$$

which statement is correct
(A) n-factor for Hydroxyl amines is 1
(B) equivalent weight of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is $\mathrm{M} / 2$
(C) 6 meq of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is contained in 3 millimoles of ferric sulphate
(D) all of these.

TYPES OF REDOX REACTIONS

13. How many moles of electron is needed for the reduction of each mole of Cr in the reaction,

$$
\mathrm{CrO}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

(A) 4
(B) 3
(C) 5
(D) 7

TITRATIONS

14. Equal volumes of 1 M each of KMnO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ are used to oxidize Fe (II) solution in acidic medium. The amount of Fe oxidized will be
(A) more with KMnO_{4}
(B) more with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(C) equal with both oxidizing agents
(D) cannot be determined
15. The normality of a mixture obtained by mixing 100 ml of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 100 ml of 0.2 M NaOH will be
(A) 0.05 N
(B) 0.1 N
(C) 0.15 N
(D) 0.2 N
16. A solution of KMnO_{4} is reduced to MnO_{2}. The normality of solution is 1.8 . The molarity will be
(A) 0.1 M
(B) 0.6 M
(C) 1.8 M
(D) 0.3 M
17. Among the following which statement is not correct
(A) HNO_{2} can act both as a reducing agent and as an oxidizing agent but HNO_{3} acts only as an oxidizing agent.
(B) The oxidation number of phosphorus can vary from -3 to +5 .
(C) The reaction between NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a redox reaction.
(D) Oxidation number can have positive, negative, zero or fractional values.
18. In redox reaction, $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidizes $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ into $\mathrm{K}^{+}, \mathrm{Fe}^{3+}, \mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{NO}_{3}{ }^{-}$ions in acidic medium, than how many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ will react with 1 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(A) 5 moles
(B) 9 moles
(C) 8 moles
(D) 30.5 moles
19. Assuming full decomposition, the volume of CO_{2} released at STP on heating 9.85 g of BaCO_{3} (Atomic mass of $\mathrm{Ba}=137$) will be
(A) $\quad 0.84 \mathrm{~L}$
(B) 2.24 L
(C) $\quad 4.06 \mathrm{~L}$
(D) 1.12 L
20. A 20.00 mL sample of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is titrated with $0.245(\mathrm{M}) \mathrm{HCl}$. If 27.15 mL of HCl is required, what is the molarity of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution
(A) $\quad 0.166 \mathrm{M}$
(B) 0.180 M
(C) $\quad 0.333 \mathrm{M}$
(D) 0.666 M
21. Benzene diazonium chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}}{ }_{2} \stackrel{-}{\mathrm{C}}$, was decomposed in the presence of hypophosphorous acid and the nitrogen evolved after drying was found to be 36.9 ml at one atmosphere and $27^{\circ} \mathrm{C}$. The amount of salt taken must be nearly
(A) 481 mg
(B) 240 mg
(C) 210 mg
(D) 140 mg
22. Molarity of a $4 \% \mathrm{NaOH}$ solution by weight having density $1.2 \mathrm{gm} / \mathrm{ml}$ will be
(a) 1.2 M
(b) 1.4 M
(c) 1.6 M
(d) 1.8 M
23. Molarity of $4 \% \mathrm{NaOH}$ solution (weight/volume) will be
(a) 1.2 M
(b) 1.0 M
(c) 1.6 M
(d) 0.5 M
24. Normality of a $0.1 \mathrm{MH}_{3} \mathrm{PO}_{4}$ solution will be
(a) 0.2
(b) 0.4
(c) 0.3
(d) 0.05
25. 100 ml of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is titrated against $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$, volume of $\mathrm{Ca}(\mathrm{OH})_{2}$, required to reach end point will be
(a) 5 ml
(b) 10 ml
(c) 20 ml
(d) 15 ml

LEVEL-II

MOLES

26. The molar ratio of Fe^{++}to Fe^{+++}in a mixture of FeSO_{4} and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ having equal number of sulphate ion in both ferrous and ferric sulphate is
(A) $1: 2$
(B) $3: 2$
(C) $2: 3$
(D) can't be determined
27. Calculate the number of oxygen atoms required to combine with 7 g of N_{2} to form $\mathrm{N}_{2} \mathrm{O}_{3}$ when 80% of N_{2} is converted to $\mathrm{N}_{2} \mathrm{O}_{3}$.
(A) 2.3×10^{23}
(B) 3.6×10^{23}
(C) 1.8×10^{21}
(D) 5.4×10^{21}
28. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g . The empirical formula, molar mass of the gas and molecular formula will be respectively
(A) $\mathrm{CH}_{2}, 30, \mathrm{C}_{2} \mathrm{H}_{4}$
(B) $\mathrm{CH}, 30, \mathrm{C}_{2} \mathrm{H}_{2}$
(C) $\mathrm{CH}, 26, \mathrm{C}_{2} \mathrm{H}_{2}$
(D) $\mathrm{CH}_{2}, 26, \mathrm{C}_{2} \mathrm{H}_{4}$
29. Which of the following has least mass
(A) 2 g atom of nitrogen
(B) 3×10^{23} atoms of C
(C) 1 mole of S
(D) 7.0 g of Ag

VOLUMETRIC \& GRAVIMETRIC ANALYSIS

30. Assuming fully decomposed, the volume of CO_{2} released at STP on heating 9.85 g of BaCO_{3} (Atomic mass of $\mathrm{Ba}=137$) will be
(A) 0.84 L
(B) 2.24 L
(C) 4.06 L
(D) 1.12 L
31. Hydrochloric acid solutions A and B have concentration of 0.5 N and 0.1 N respectively. The volume of solutions A and B required to make 2 litres of 0.2 N hydrochloric are
(A) $0.5 I$ of $A+1.5 I$ of B
(B) 1.5 I of $\mathrm{A}+0.5 \mathrm{I}$ of B
(C) 1.0 I of $A+1.0 \mathrm{I}$ of B
(D) 0.75 I of $A+1.25 \operatorname{I}$ of B
32. Volume of a gas at STP is $1.12 \times 10^{-7} \mathrm{cc}$. Calculate the number of molecules in it
(A) 3.01×10^{20}
(B) 3.01×10^{12}
(C) 3.01×10^{23}
(D) 3.01×10^{24}
33. The mass of BaCO_{3} produced when excess CO_{2} is bubbled through a solution of $0.205 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$ is
(A) 81 g
(B) 40.5 g
(C) 20.25 g
(D) 162 g

REDOX REACTIONS

34. Which reaction does not involve either oxidation nor reduction?
(a) $\mathrm{VO}^{2+} \rightarrow \mathrm{V}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Na} \rightarrow \mathrm{Na}^{+}$
(c) $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(d) $\mathrm{Zn}^{2+} \rightarrow \mathrm{Zn}$
35. When KMnO_{4} acts as an oxidizing agent and ultimately forms $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}, \mathrm{Mn}^{2+}$ then the number of electrons transferred in each case respectively is:
(a) $4,3,1,5$
(b) $1,5,3,7$
(c) $1,3,4,5$
(d) $3,5,7,1$
36. The reaction $\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$is :
(a) Oxidation
(b) Reduction
(c) Disproportionation
(d) Neither oxidation nor reduction
37. One mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses ten moles of electrons to from a new compound y . Assuming that all the nitrogen appears in the new compound. What is the oxidation state of nitrogen in y. There is not change in the oxidation state of hydrogen:
(a) -1
(b) -3
(c) +3
(d) +5
38. 1 mol of ferric oxalate is oxidized by x mol of MnO_{4}^{-}and also 1 mol of ferrous oxalate is oxidized by y mol of MnO_{4}^{-}in acidic medium. The ratio (x / y) is:
(a) $2: 1$
(b) $1: 2$
(c) $3: 1$
(d) $1: 3$
39. 3×10^{-3} mole $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reacts completely with $4.5 \times 10^{-3} \mathrm{~mole}^{\mathrm{nt}}$ to give XO_{3}^{-}and Cr^{3+}. The value of n is:
(a) 3
(b) 1
(c) 0
(d) 4
40. A certain ion X^{n+} is oxidized successively to XO_{4}^{2-} and then XO_{4}^{-}by a powerful oxidizing agent. If the number of moles of the oxidizing agent required in the successive steps of oxidation are in the ratio $4: 1, n$ is:
(a) 3
(b) 1
(c) 2
(d) 4

CALCULATION OF n-FACTOR

41. In the following reaction (unbalanced) equivalent wt . of $\mathrm{As}_{2} \mathrm{~S}_{3}$ is related to molecular wt . M by:

$$
\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}
$$

(a) $\mathrm{M} / 2$
(b) $\mathrm{M} / 4$
(c) $\mathrm{M} / 28$
(d) $\mathrm{M} / 24$
42. In the reaction, $2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$ the ratio of equivalent weight of CuSO_{4} to its molecular weight is:
(a) $1 / 8$
(b) $1 / 4$
(c) $1 / 2$
(d) 1

TITRATIONS

43. A 100 ml solution of 0.1 N HCl was titrated with 0.2 N NaOH solution. The titration was discontinued after adding 30 ml of NaOH solution. The remaining titration was completed by adding 0.25 N KOH solution. The volume of KOH required for completing the titration is
(A) 70 ml
(B) 32 ml
(C) 35 ml
(D) 16 ml
44. A solution of $10 \mathrm{ml} 0.1 \mathrm{MFeSO}_{4}$ was titrated with KMnO_{4} solution in acidic medium. The amount of KMnO_{4} used will be:
(a) 5 ml of 0.1 M
(b) 10 ml of 0.1 M
(c) 10 ml of 0.5 M
(d) 10 ml of 0.02 M
45. If equal volumes of $1 \mathrm{M}_{1} \mathrm{KnO}_{4}$ and $1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions are allowed to oxidized Fe^{2+} in acidic medium. The amount of iron oxidized will be:
(a) more by KMnO_{4} solution
(b) more by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
(c) equal in both the cases
(d) cannot be determined
46. What volume of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is needed to oxidize 100 mg of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in acidic solution?
(a) 4.1 mL
(b) 8.2 mL
(c) 10.2 mL
(d) 4.6 mL
47. $60 \mathrm{ml} 0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is treated with excess $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The volume of CO_{2} gas (measured at NTP) obtained is:
(a) 448 ml
(b) 672 ml
(c) 224 ml
(d) $112 \mathrm{~m} l$

(a) has been neutralized to HPO_{4}^{2-}
(b) has been neutralized to PO_{4}^{3-}
(c) has been reduced to HPO_{3}^{2-}
(d) has been neutralized to $\mathrm{H}_{3} \mathrm{PO}_{4}^{-}$

VOLUME STRENGTH OF $\mathrm{H}_{2} \mathrm{O}_{2}$

49. The labeling on a bottle of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 20 "vol", then the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in percentage strength will be:
(A) 3.03%
(B) 5%
(C) 4.55%
(D) 6.06%
50. What volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution of 22.4 "vol" strength is required to liberate 2240 mL of O_{2} at NTP ?
(A) 300 mL
(B) 200 mL
(C) 100 mL
(D) 500 mL

LEVEL-III

51. What volume of $1 \mathrm{M} \mathrm{FeC}_{2} \mathrm{O}_{4}$ (ferrous oxalate) solution is required for the complete oxidation of 100 ml of $1 \mathrm{M} \mathrm{Fe}(\mathrm{SCN})_{2}$ solution into $\mathrm{Fe}^{3+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}$ and nitrate ?
(A) 0.7 litre
(B) 1 litre
(C) 0.8 litre
(D) 1.1 litre
52. A solution contains Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions which on titration with $1 \mathrm{M} \mathrm{KMnO}_{4}$ consumes 10 ml of the oxidizing agent for complete oxidation in acidic medium. The resulting solution is neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, acidified with dil. $\mathrm{CH}_{3} \mathrm{COOH}$ and is treated with excess of KI . The liberated iodine requires 25 ml of 1 M of hypo solution, then that will be the molar ratio of Cu^{2+} to $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions in solution ?
(A) $5: 2$
(B) $1: 2$
(C) $2: 1$
(D) $1: 1$
53. In redox reaction, $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ oxidises $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right)$ into $\mathrm{K}^{+}, \mathrm{Fe}^{3+}, \mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{NO}_{3}{ }^{-}$ions in acidic medium, where $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ itself reduces into Mn^{2+}, than how many moles of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ will react with 1 mole of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(A) 5 moles
(B) 9 moles
(C) 8 moles
(D) 6.1 moles
54. For 109% labeled oleum if the number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and free SO_{3} be x and y respectively, then what will be the value of $\frac{x+y}{x-y}$?
(A) 1
(B) 18
(C) $1 / 3$
(D) 9.9
55. A sample of tap water contains 366 ppm of HCO_{3}^{-}ions with Ca^{2+} ion. Now it is removed by Clark's method by addition of $\mathrm{Ca}(\mathrm{OH})_{2}$. Then what minimum mass of $\mathrm{Ca}(\mathrm{OH})_{2}$ will be required to remove
HCO_{3}^{-}Ions completely from 500 g of same tap water sample
(A) 1 g
(B) 0.4 g
(C) 0.222 g
(D) 0.111 g
56. $55 \mathrm{~g} \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ sample containing inert impurity is completely reacting with 100 mL of 56 'vol' strength of $\mathrm{H}_{2} \mathrm{O}_{2}$, then what will be the percentage purity of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in the sample ? ($\mathrm{Ba}-137, \mathrm{Mn}-55$)
(A) 40%
(B) 25%
(C) 10%
(D) 68.18%
57. An aqueous solution of 0.57 g of KIO_{3} (formula weight $=214$) reacts with excess of KI in presence of HCl , where both converts into I_{2}. The liberated I_{2} consumes certain volume of (0.1 M) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, in basic medium where it converts into $\mathrm{SO}_{4}{ }^{2-}$, then find out the volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (in mL) needed to reach the equivalence point.
(A) 19.97
(B) 29.97
(C) 24
(D) 35
58. The simplest formula of a compound containing 50% of element X (atomic mass 10) and 50% of element Y (atomic mass 20) is
(A) XY
(B) $X_{2} Y$
(C) $X Y_{3}$
(D) $X_{2} Y_{3}$
59. The number of water molecules present in a drop of water (volume 0.0018 ml) at room temperature is
(A) 6.023×10^{19}
(B) 1.084×10^{18}
(C) 4.84×10^{17}
(D) 5.023×10^{23}
60. What will be the volume of CO_{2} at NTP obtained on heating 10 grams of (90% pure) limestone
(A) 22.4 litre
(B) 2.016 litre
(C) 2.24 litre
(D) 20.16 litre

MORE THAN ONE ANSWER QUESTIONS

Level-I

1. Which of the following solution (s) is / are 0.2 N ?
(A) 3 g acetic acid dissolve in 250 ml water
(B) $5.7 \mathrm{~g} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ dissolve in 500 ml water
(C) 0.2 mole $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolve in one litter water
(D) 0.2 g equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissolve in 500 ml water
2. In which of the following compound(s) n-factor is more than 45 in redox reaction. Assuming all element in compound oxidized to it's maximum oxidation state
(A) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(B) $\mathrm{Cu}_{2} \mathrm{~S}$
(C) $\mathrm{Fe}(\mathrm{SCN})_{3}$
(D) $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
3. The oxidation number of Cr is +6 in :
(A) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(B) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(C) $\mathrm{KCrO}_{3} \mathrm{Cl}$
(D) CrO_{5}
4. Dichromate ion in acidic medium oxidizes stannous ion as:

$$
\mathrm{xSn}^{2+}+\mathrm{yCr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{zH}^{+} \longrightarrow \mathrm{aSn}^{+4}+\mathrm{bCr}^{3+}+\mathrm{cH}_{2} \mathrm{O}
$$

(A) the value of $\mathrm{x}: \mathrm{y}$ is $1: 3$
(B) the value of $x+y+z$ is 18
(C) $\mathrm{a}: \mathrm{b}$ is $3: 2$
(D) the value of $\mathrm{z}-\mathrm{c}$ is 7
5. Mixture of $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ can be neutralized by
(A) 1 mol KOH
(B) $2 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$
(C) 4 mol NaOH
(D) 2 mol KOH
6. $\quad 150 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in acidic solution can oxidize completely
(A) $150 \mathrm{~mL} 1 \mathrm{M} \mathrm{Fe}^{2+}$
(B) $50 \mathrm{~mL} 1 \mathrm{M} \mathrm{FeCrO}_{4}$
(C) $75 \mathrm{~mL} 1 \mathrm{M} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions
(D) $25 \mathrm{~mL} 1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
$\mathrm{COOH} \quad \mathrm{COOK}$
7. $\mathrm{COOH}_{\mathrm{COOH}}$ and \mid the correct statements regarding

COOH	COOK
\mid	and
COOH	COOH

(A) When both behaves as reducing agent, then their equivalent weights are equal to half of their molecular weight respectively
(B) 1000 mL of 1 N solution of each is neutralized by $1000 \mathrm{~mL} 1 \mathrm{~N} \mathrm{Ca}(\mathrm{OH})_{2}$
(C) 1000 mL of 1 M solution of each is neutralized by 1000 mL of $1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
(D) 1000 mL of 1 M solution of each is oxidised by $200 \mathrm{~mL} 2 \mathrm{M} \mathrm{of}^{\mathrm{KMnO}} \mathbf{H}_{4}$ in acidic medium
8. x mmol of KIO_{3} reacts completely with y mmol of $\mathrm{KI} \mathrm{to}^{2} \mathrm{give}_{2}$ quantitatively. If $z \mathrm{mmol}$ of hypo are required for complete titration against this I_{2} then which relation is not correct ?
(A) $\mathrm{z}=6 \mathrm{x}$
(B) $6 y=5 z$
(C) $x=5 y$
(D) $x+y=2 z$
9. x ml of 0.01 N HCl are required for titration against a mixture of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ using phenolphthalein as indicator, when the colour changes from pink to colourless, few drops of methyl orange were then added and the titration was continued. Additional y ml of 0.01 N HCl were required. Which of the following values of x and y are possible?
(A) $\mathrm{x}=10, \mathrm{y}=130$
(B) $\mathrm{x}=148, \mathrm{y}=54$
(C) $\mathrm{x}=36, \mathrm{y}=63$
(D) $\mathrm{x}=420, \mathrm{y}=140$
10. Dichromate ion in acidic medium oxidizes stannous ion as

$$
\mathrm{xSn}^{2+}+\mathrm{yCr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{zH}^{+} \rightarrow \mathrm{aSn}^{4+}+\mathrm{bCr}^{3+}+\mathrm{cH}_{2} \mathrm{O}
$$

(A) The value of $x: y$ is $1: 3$
(B) The value of $x+y+z$ is 18
(C) The value of $\mathrm{a}: \mathrm{b}$ is $3: 2$
(D) The value of $x-c$ is 7
11. For the following balanced redox reaction,
$2 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+\mathrm{Br}_{2}{ }^{(R)} 2 \mathrm{Mn}^{2+}+2 \mathrm{BrO}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
If the molecular wt. of $\mathrm{MnO}_{4}^{-}, \mathrm{Br}_{2}$ be Mx , My respectively, then
(A) equivalent wt. of MnO_{4} is $\mathrm{Mx} / 5$
(B) equivalent wt. of Br_{2} is $\mathrm{My} / 10$
(C) the n -factor ratio of Mn^{2+} to BrO_{3}^{-}is $1: 1$
(D) none of these
12. When non-stoichiometric compound $\mathrm{Fe}_{0.95} \mathrm{O}$ is heated in presence of oxygen, then it converts into $\mathrm{Fe}_{2} \mathrm{O}_{3}$, then which of the following statements are correct?
(A) equivalent weight of $\mathrm{Fe}_{0.95} \mathrm{O}$ is $\mathrm{M} / 0.5$ where M is molecular weight of $\mathrm{Fe}_{0.95} \mathrm{O}$.
(B) The number of moles of Fe^{3+} and $\mathrm{Fe}^{2+} 1$ moles $\mathrm{Fe}_{0.95} \mathrm{O}$ and 0.1 and 0.85 respectively.
(C) The number of moles of Fe^{3+} and Fe^{2+} in 1 mole of $\mathrm{Fe}_{0.95} \mathrm{O}$ are 0.85 and 0.10 respectively
(D) The \% composition of Fe^{2+} and Fe^{3+} in the non stoichiometric compound is 89.47% and 10.53% respectively.
13. When FeS_{2} is oxidized with sufficient O_{2}, then its oxidation product is found to be $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SO_{2}, if the molecular weight of $\mathrm{FeS}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and SO_{2} are $\mathrm{M}, \mathrm{M}_{\mathrm{x}}$ and M_{Y}, then which of the following statements are correct?
(A) equivalent wt. of FeS_{2} is $\mathrm{M} / 11$
(B) the molar ratio of FeS_{2} to O_{2} is $4: 11$
(C) the molar ratio of FeS_{2} to O_{2} is $11: 4$
(D) The molar ratio of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SO_{2} is $1: 4$
14. $40 \mathrm{~g} \mathrm{NaOH}, 106 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $84 \mathrm{~g} \mathrm{NaHCO}_{3}$ is dissolved in water and the solution is made 1 litre. 20 mL of this stock solution is titrated with 1 N HCl , hence which of the following statements are correct.
(A) the titre reading of HCl will be 40 mL , if phenolphthalein is used indicator from the very beginning
(B) the titre reading of HCl will be 60 mL if phenolphthalein is used indicator from the very beginning.
(C) the titre reading of HCl will be 40 mL if the methyl orange is used indicator after the $1^{\text {st }}$ end point
(D) the tire reading of HCl will be 80 mL , if methyl orange is used as indicator from the very beginning.
15. $150 \mathrm{~mL} \frac{M}{10} \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in acidic can oxidize completely
(A) $150 \mathrm{~mL} 1 \mathrm{M} \mathrm{Fe}^{2+}$
(B) $50 \mathrm{~mL} 1 \mathrm{M} \mathrm{FeC}_{2} \mathrm{O}_{4}$
(C) $75 \mathrm{~mL} 1 \mathrm{M} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
(D) $25 \mathrm{~mL} 1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
16. Which of the following quantities are dependent on temperature?
(A) Molarity
(B) Normality
(C) Molality
(D) Mole fraction.
17. For the reaction:
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
1 mole 1 mole
then which of the following statements are correct?
(A) the equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is 49 .
(B) the resulting solution is neutralized by 1 mole of KOH
(C) 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is completely neutralized by 1.5 mole of $\mathrm{Ca}(\mathrm{OH})_{2}$
(D) none
18. 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will exactly neutralize
(A) 2 mol of ammonia
(B) 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$
(C) 0.5 mol of $\mathrm{Ba}(\mathrm{OH})_{2}$
(D) 2 mol of NaOH
19. During the titration of a mixture of $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and inert substances against HCl .
(A) Phenolphthalein is used to detect the end point when half equivalent of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and full equivalent NaOH is consumed
(B) Phenolphthalein is used to detect the second end point
(C) Methyl orange is used to detect the final end point
(D) Methyl orange is used to detect the first end point
20. The reaction, $3 \mathrm{ClO}^{-}(\mathrm{aq}) \longrightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$ is an example of
(A) Oxidation reaction
(B) Reduction reaction
(C) disproportionation reaction
(D) Decomposition reaction

Level-II

21. 1 mole of a mixture of CO and CO_{2} requires exactly 1 litre solution of 1 M NaOH for complete neutralization. If CO present in mixture is now converted to CO_{2} and again the mixture is treated with NaOH , then after this conversion
(A) moles of CO_{2} present initially in mixture $=1$
(B) 2 litre NaOH solution of 1 M is more required for neutralization
(C) 2 litre solution of $\frac{1}{2} \mathrm{M} \mathrm{NaOH}$ is required more for neutralization
(D) 56 g KOH in aqueous solution is required more for neutralization
22. 2 g of oleum is diluted with water. The solution was then neutralized by 432.5 mL of 0.1 N NaOH . Select the correct statements :
(A) $\%$ of oleum is 108.11
(B) $\%$ of free SO_{3} is 26.5 in oleum
(C) Equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are 0.03
(D) Equivalent of $\mathrm{SO}_{3}=6.625 \times 10^{-3}$
23. Which one is not correct about $\mathrm{VO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5}$?
(A) 2 mole of VO reacts completely with 5 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(B) 1 mole of VO reacts completely with 1.5 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(C) Eq. weight of $\mathrm{V}_{2} \mathrm{O}_{5}=\mathrm{M} / 6$ and of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $\mathrm{M} / 2$
(D) Eq. weight of $\mathrm{VO}=\mathrm{M} / 3$ and of FeO is $2 \mathrm{M} / 3$
24. 1 mole of $\mathrm{H}_{3} \mathrm{PO}_{3}$ reacts with NaOH in solution. Select the correct statements.
(A) 1 mole of NaOH will replace NH^{+}ion from $\mathrm{H}_{3} \mathrm{PO}_{3}$
(B) 2 moles of NaOH will replace $2 \mathrm{NH}^{+}$ion from $\mathrm{H}_{3} \mathrm{PO}_{3}$
(C) 3 moles of NaOH will replace $3 \mathrm{NH}^{+}$ion from $\mathrm{H}_{3} \mathrm{PO}_{3}$
(D) On complete neutralization of $\mathrm{H}_{3} \mathrm{PO}_{3}$, the equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{3}=41$
25. $\quad 100 \mathrm{~mL}$ of 0.8 M NaOH are used to neutralized 100 mL solution obtained by passing 2.70 g $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in water. Select the correct statement
(A) The solution of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ has $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 0.4 M HCl
(B) The volume ratio of NaOH used for $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl is $1: 2$
(C) The volume ratio of NaOH used for $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl is $1: 1$
(D) Molarity of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ solution is 0.1 M
26. Which one are correct about the solution that contains $3.42 \mathrm{ppm} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and $1.42 \mathrm{ppm} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
(A) $\left[\mathrm{Al}^{3+}\right]=\left[\mathrm{Na}^{+}\right]$
(B) $\left[\mathrm{SO}_{4}^{2-}\right]=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Al}^{3+}\right]$
(C) $\left[\mathrm{SO}_{4}^{2-}\right]=\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Al}^{3+}\right]$
(D) $\left[\mathrm{SO}_{4}^{2-}\right]=\left[\mathrm{Na}^{+}\right]$
27. 100 mL of $0.1 \mathrm{M} \mathrm{NaHC}_{2} \mathrm{O}_{4}$ is neutralized by $\mathrm{V}_{1} \mathrm{~mL}$ of 0.1 M NaOH and $\mathrm{V}_{2} \mathrm{~mL}$ of a $\mathrm{M} \mathrm{KMnO}_{4}$ separately, then for complete neutralization
(A) volume of NaOH required $=200 \mathrm{~mL}$
(B) if M of KMnO_{4} is 0.1 M then $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=5: 1$
(C) if M of KMnO_{4} is 0.1 M then $\mathrm{V}_{2}=20 \mathrm{~mL}$
(D) if M of KMnO_{4} is 0.2 M then $\mathrm{V}_{2}=2 \mathrm{~mL}$
28. An mixture of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ requires 100 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ for complete neutralization. The same mixture on neutralization by a base requires 50 mL of 0.2 M NaOH solution. Which one are correct
(A) Mole ratio of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=4: 1$
(B) Equivalent ratio of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=4: 1$
(C) Moles of $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ in mixture $=25 \times 10^{-3}$
(D) Mole ratio of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=1: 4$
29. Quantitative estimation of Fe^{2+} can be made by KMnO_{4} in acidified medium. In which medium it can be estimated by KMnO_{4}.
(A) $\mathrm{In}_{2} \mathrm{SO}_{4}$
(B) In HNO_{3}
(C) In HCl
(D) all of these
30. Which one is not correct about the reaction: $\mathrm{FeS}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$
(A) Eq. weight of FeS_{2} is $\mathrm{M} / 11$
(B) Eq. wt. of $\mathrm{SO}_{2}=\mathrm{M} / 5$
(C) 1 mole of FeS_{2} requires $7 / 4$ mole of O_{2}
(D) S has -2 oxidation sate in FeS_{2}

Level-III

31. 0.220 g of a gas occupies a volume of 112 ml at a pressure of 1 atm and temperature of 273 K . The gas can be
(A) Nitrogen
(B) nitrous oxide
(C) carbon dioxide
(D) propane
32. Which of the following contains the same number of molecules?
(A) 1 g of $\mathrm{O}_{2}, 2 \mathrm{~g}$ of SO_{2}
(B) 1 g of $\mathrm{CO}_{2}, 1 \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}$
(C) 112 ml of O_{2} at STP, 224 ml of He at 0.5 atm and 273 K
(D) 1 g of oxygen, 1 g of ozone
33. 0.2 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ and 0.5 mole of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed in 1 L of solution. Which of the following is/are correct about this system.
(A) 0.2 mol of barium phosphate precipitate is obtained
(B) 0.1 mol of barium phosphate precipitate is obtained
(C) Molarity of Ba^{2+} ions in the resulting solution is 0.2
(D) Molarities of Na^{+}and NO_{3}^{-}ions are 0.6 and 1.0 respectively.
34. 0.5 mole of sodium nitrite and 1 mole of ammonium chloride are mixed in aqueous solution. The solution is heated and the evolved gas is collected. Then which is/are correct about the gas/
(A) 22.4 L gas at STP
(B) 11.2 L of gas at STP
(C) 0.5 mole of gas
(D) 14 g of gas

STOICHIOMETRY

35. $\quad 100 \mathrm{ml}$ of mixture of CO and CO_{2} is mixed with 30 ml of oxygen and sparked in a eudiometer tube. The residual gas after treatment with aqueous KOH has a volume of 10 ml which remains unchanged when treated with alkaline pyrogallol. If all the volumes are under the same conditions, point out the correct options.
(A) The volume of CO that reacts, is 60 ml
(B) The volume of CO that remains unreacted, is 10 ml
(C) The volume of O_{2} that remains unreacted, is 10 ml
(D) The volume of CO_{2} that gets absorbed by aqueous KOH , is 90 ml .

Passage-I

All such titration which involves the direct titration of lodine with a reducing agent are grouped under lodimetry. lodimetry is employed to determine the strength of reducing agent such as sodium thio sulphate

$$
\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{--}
$$

If iodine is liberated as a result of chemical reaction involving oxidation of an iodide ion by a strong oxidizing agent in neutral or acidic medium the liberated iodine is then titrated with reducing agent. lodometry is used to estimate the strength of oxidizing agent.

For example the estimation of Cu^{++}with thiosulphate.

$$
\begin{aligned}
& \mathrm{Cu}^{++}+\mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2} \\
& \mathrm{I}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{--} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{--}+\mathrm{I}^{-}
\end{aligned}
$$

Starch used as indicator near the end point which form blue colour complex with I_{3}^{-}. The blue colour disappears when there is no more of free I_{2}.

1. In lodine titration lodine remains in solution in the form of
(A) I_{3}^{-}
(B) I_{2}
(C) I_{3}^{+}
(D) \vdash^{-}
2. In the reaction, $2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$ the ratio of equivalent weight of CuSO_{4} to its molecular weight is:
(A) $1 / 8$
(B) $1 / 4$
(C) $1 / 2$
(D) 1
3. When 159.50 g of CuSO_{4} in a solution is reacted with KI , then the liberated iodine required 100 ml 1 $\mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ for complete reaction, then what is the percentage purity of sample used in making the solution.
(A) 10\%
(B) 20\%
(C) 5%
(D) None of these
4. $\quad 100 \mathrm{ml}$ of 0.1 N hypo decolourised iodine by the addition of x g of crystalline blue vitriol to excess of KI. The value of x is
(A) $5 g$
(B) 2.5 g
(C) 10 g
(D) 1.25 g

Passage-II

Like acid base titration, in redox titration also, the equivalence point is reached when the reducing agent is completely oxidized by the oxidizing agent. But contrary to the acid-base titrations, oxidizing agents can themselves be used as internal indicator in redox titration e.g. $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (orange yellow), Cr^{3+} (green), MnO_{4}^{-}(purple), Mn^{2+} (light pink), where strength of the solution may be expressed as molarity i.e. number of moles of solute per litre of solution.
5. In a titration experiment, a student finds that 23.48 ml of a NaOH solution are needed to neutralize 0.5468 g of KHP (molecular formula $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$). What is the concentration in molarity of NaOH solution?
(A) 0.114 M
(B) 0.228 M
(C) 0.057 M
(D) 0.028 M
 acidic medium. What is the number of moles of FeSO_{4} being oxidized for the reaction
(A) 2.18×10^{-2}
(B) 1.09×10^{-2}
(C) 0.545×10^{-2}
(D) 0.272×10^{-2}
7. A purple coloured solution is added from a burette to FeSO_{4} solution kept in the flask. After sometime, the purple colour changes to light pink. The ion formed from that solution is
(A) MnO_{4}^{-}
(B) Fe^{2+}
(C) Fe^{3+}
(D) Mn^{2+}
8. Concentrated aqueous sulphuric acid is $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.84 \mathrm{~g} / \mathrm{ml}$. What volume of the concentrated acid is required to make 5 litre of $0.50 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
(A) 271.7 ml
(B) 13.5 ml
(C) 135.85 ml
(D) 27.1 ml

Passage-III

lodine titrations: Compounds containing iodine are widely used in titrations, commonly known as iodine titration. It is of two kinds:
(i) Iodometric titrations
(ii) lodimetric titrations.
(i) lodometric titrations: It is nothing but an indirect method of estimating the iodine. In this type of titration, an oxidizing agent is made to react with excess of KI , in acidic medium or, basic medium in which I^{-}oxidizes into I_{2}. Now the liberated I_{2} can be titrated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.

$$
\mathrm{KI} \xrightarrow{\text { Oxidising Agent }} \mathrm{I}_{2} \xrightarrow{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{H}^{+}} \mathrm{I}^{-}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}
$$

Although solid I_{2} is black and insoluble in water, but it converts into soluble I_{3} ions

Black dark brown

STOICHIOMETRY

Starch is used as indicator near the end point or equivalence point. Even small amount of I_{2} molecules, gives blue colour with starch. The completion of the reaction can be detected when blue colour disappears at the and point. In iodimetric titration, the strength of reducing agent is determined by reacting it with I_{2}.
9. When 79.75 g of CuSO_{4} sample containing inert impurity is reacted with KI , the liberated I_{2} is reacted with $50 \mathrm{~mL}(1 \mathrm{M}) \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in basic medium, where it oxidizes into $\mathrm{SO}_{4}{ }^{2-}$ ions, and I_{2} reduces into I^{-}, then what will be the $\%$ purity of CuSO_{4} in sample?
(A) 60\%
(B) 75%
(C) 50%
(D) 95%
10. When 214 g of KIO_{3} reacts with excess of KI in presence of H^{+}, then it produces I_{2}. Now I_{2} is completely reacted with $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution in basic medium, where it converts into $\mathrm{SO}_{4}{ }^{2-}$ ions. Then what volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is needed to react the end point of the reaction?
(A) 500 mL
(B) 800 mL
(C) 1500 mL
(D) 750 mL .
11. A solution containing Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions M which on titration with $\mathrm{M} / 10 \mathrm{KMnO}_{4}$ requires 50 mL . The resulting solution is neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$, then treated with excess of KI . M The liberated I_{2} required $25 \mathrm{~mL} \mathrm{M} / 10 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in acidic solution, then what is the difference of the number of mole of Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions in the solution ?
(A) 40
(B) 10
(C) 30
(D) 50
12. When 1.66 g of KI is reacted with excess of KIO_{3} in presence of dil. HCl , then I_{2} is produced. The amount of KIO_{3} reacted and the I_{2} formed are respectively.
(A) $4 \times 10^{-2} \mathrm{~mole}, 3 \times 10^{-3} \mathrm{~mole}$
(B) $1.5 \times 10^{-2} \mathrm{~mole}, 5 \times 10^{-3} \mathrm{~mole}$
(C) $5 \times 10^{-2} \mathrm{~mole}, 1.5 \times 10^{-3} \mathrm{~mole}$
(D) $2 \times 10^{-3} \mathrm{~mole}, 6 \times 10^{-3}$ mole.

Match the Column

1. Match the column

Column - I (Reaction)

(a) $\mathrm{NH}_{3} \longrightarrow \mathrm{NO}_{3}^{-}$
(b) $\mathrm{FeC}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Fe}^{3+}+2 \mathrm{CO}_{3}{ }^{2-}$
(c) $\mathrm{H}_{2} \mathrm{SO}_{5} \longrightarrow \mathrm{~S}_{8}$
$(\mathrm{d}) \mathrm{KMnO}_{4} \longrightarrow \mathrm{Mn}^{2+}$
2. Match the column

Column - I (Acid)
(a) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(b) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(c) $\mathrm{H}_{3} \mathrm{BO}_{3}$
(d) EDTA

Column - II (Equivalent weight)

(p) $M / 3$
(q) $M / 6$
(r) $M / 8$
(s) $M / 5$
(t) reducing agent

Column - II (Nature)
(p) Monobasic
(q) pentabasic
(r) Tri basic
(s) Tetra basic
(t) Dibasic
3. Match the following

Column - I
(a) $\mathrm{KMnO}_{4} \xrightarrow{H^{+}} \mathrm{Mn}^{+2}$
(b) $\mathrm{MgC}_{2} \mathrm{O}_{4} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{CO}_{2}$
(c) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{Cr}^{+3}$
(d) $\mathrm{CrO}_{5} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{3}$

Column - II

(p) $M / 2$
(q) $M / 5$
(r) $M / 6$
(s) $M / 3$
(t) Oxidising agent

ASSERTION/REASON

(A) Statement - 1 is True, Statement - 2 is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement-1.
(B) Statement - 1 is True, Statement - 2 is True; Statement - 2 is NOT a correct explanation for Statement - 1 .
(C) Statement - 1 is True, Statement - 2 is False.
(D) Statement - 1 is False, Statement - 2 is True.

1. STATEMENT - 1: In the titrations of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume required at the equivalence point is twice that of acid required using phenolphthalein indicator.

STATEMENT - 2: Two moles of HCl are required for complete neutralization of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
2. STATEMENT - 1: The molality of the solution does not change with temperature

STATEMENT - 2: The molality is expressed in units of moles per 1000 gm of solvent.
3. STATEMENT-1:In the roasting of FeS_{2}, ore is converted into ferric oxide and SO_{2} gas. The equivalent mass of FeS_{2} is equal to molecular weight /11.

STATEMENT - 2: The n-factor for reducing agent is total net change in oxidation number per formula unit.
4. STATEMENT-1: Molarity and molality of solution change with temperature

STATEMENT-2 : On changing temperature the density of the solution is changed
5. STATEMENT-1: Atomic wt. of P atom in the molecule $P_{x} O_{y}$ is $\frac{2 y E_{p}}{x}$ where E_{p} is the equivalent mass of P atom

STATEMENT-2 : The n factor of P is $=\frac{\mathrm{x}}{\mathrm{y}}$
6. STATEMENT-1: $109 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ represent a way to express concentration of industrial $\mathrm{H}_{2} \mathrm{SO}_{4}$ because

STATEMENT-2 : It represents that $9 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ reacts with $40 \mathrm{~g} \mathrm{SO}_{3}$ to produce $49 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ in addition to 100 g $\mathrm{H}_{2} \mathrm{SO}_{4}$
7. STATEMENT-1: The percentage of nitrogen in urea is 46.6%

STATEMENT-2: Urea is a covalent compound.
8. STATEMENT-1: Molarity and molality of a solution both change with density.

STATEMENT-2: Density of a solution changes when percentage by mass of a solution changes.
9. STATEMENT-1 : $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid and it's salt $\mathrm{Na}_{3} \mathrm{PO}_{3}$ does not exists

STATEMENT-2 : Being dibasic nature, only two H are replaceable.
10. STATEMENT-1 : Addition of water to a solution containing solute and solvent changes it's normality or molarity.

STATEMENT-2 : The milliequivalent and millimoles of the solute are not changed on dilution.

INTEGERANSWER TYPE QUESTIONS

1. 0.01 mole of $_{\text {FeS }}^{n}$ (iron (II) sulphide) required 0.06 mole of $^{2} \mathrm{AO}_{4}^{3-}$ for complete oxidation. The species formed are $\mathrm{FeO}, \mathrm{SO}_{2}$ and A^{2+}. Calculate the value of n .
2. A solution containing $2.68 \times 10^{-3} \mathrm{~mol}^{2} \mathrm{~A}^{n+}$ ions requires $1.61 \times 10^{-3}{\mathrm{~mol} \mathrm{of} \mathrm{MnO}_{4}-\text { for the complete oxidation }}^{-1}$ of A^{n+} to AO_{3}^{-}in acidic medium. What is the value of n ?
3. Haemoglobin contains 0.25% iron by weight. The molecular weight of Haemoglobin is 89600 . Calculate the no. of iron atom per molecule of Haemoglobin.
4. Copper forms two oxides. For the same amount of copper, twice as much oxygen was used to form first oxide than to form second one. If valence of Cu in I oxide is 2 , then find the valence of Cu in second oxide?
5. $\quad 1.575 \mathrm{~g}$ of oxalic acid $(\mathrm{COOH})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ are dissolved in water and the volume made upto 250 mL . On titration 16.68 mL of this solution requires 25 mL of $\mathrm{N} / 15 \mathrm{NaOH}$ solution for complete neutralization. Calculate x .
6. What is the oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$? (Need to answer the integer part only).
7. One mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses 10 moles of electrons to form a new compound Y . Assuming that all nitrogen appears in the new compound, what is the oxidation number of nitrogen in Y (there is not change in the oxidation state of hydrogen). (Need to answer the integer part only).
8. $\quad 0.63 \mathrm{~g}$ of dibasic acid was dissolved in water. The volume of the solution was made 100 mL .2 mL of this acid solution required $10 \mathrm{~mL} \frac{\mathrm{~N}}{5} \mathrm{NaOH}$ solution. What is the normality of acid.
9. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is titrated against a solution of KMnO_{4}. The reaction is

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

If it requires 46.9 mL of $1.45 \mathrm{M} \mathrm{KMnO}_{4}$ to oxidize $20 \mathrm{~g} \mathrm{of}_{2} \mathrm{O}_{2}$, find the approximate mass percentage of $\mathrm{H}_{2} \mathrm{O}_{2}$ in this solution.
10. Find the amount of caustic soda (in gram) required for complete neutralization of 100 mL 1 N HCl .

SUBJECTIVE QUESTIONS

1. Calculate the weight of MnO_{2} and the volume of HCl of specific gravity $1.2 \mathrm{gml}^{-1}$ and 4% nature by weight needed to produce 1.78 litre of Cl_{2} at STP by the reaction. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
2. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$, labeled as '20 volumes' was left open. Due to this some $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposed and the volume strength of the solution decreased. To determine the new volume strength of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution, 10 mL of the solution was taken and it was diluted to 100 mL .10 mL of this diluted solution was titrated against 25 mL of $0.0245 \mathrm{M} \mathrm{KMnO}_{4}$ solution under acidic condition. Calculate the volume strength of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.
3. A 2.0 g sample of a mixture containing sodium carbonate, sodium bicarbonate and sodium sulphate is heated till the evolution of CO_{2} ceases. The volume of CO_{2} at 750 mm Hg pressure and at 298 K is measured to be 123.9 mL . A 1.5 g of the sample requires 150 mL of $\mathrm{M} / 10 \mathrm{HCl}$ for complete neutralization. Calculate the percentage composition of the components of the mixture.
4. One litre of a mixture of O_{2} and O_{3} at STP was allowed to react with an excess of acidified solution of KI . The iodine liberated required 40 mL of $\mathrm{M} / 10$ sodium thiosulphate solution for titration. What is the mass per cent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture.
5. Potassium selenate is isomorphous with potassium sulphate and contains 45.52% selenium by weight. Calculate the atomic weight of selenium. Also report the equivalent weight of potassium selenate.
6. Borax in water gives:

$$
\mathrm{B}_{4} \mathrm{O}_{7}^{2-}+7 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{BO}_{3}+2 \mathrm{OH}^{-}
$$

How many gram of borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ are required to?
a) Prepare 50 mL of 0.2 M solution
b) neutralize 25 mL of 0.1934 M of HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ separately
7. For estimating ozone in the air, a certain volume of air is passed through an acidified or neutral KI solution when oxygen is evolved and iodide is oxidized to give iodine. When such a solution is acidified, free iodine is evolved which can be titrated with standard $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. In an experiment, 10 litre of air at 1 atm and $27^{\circ} \mathrm{C}$ were passed through an alkaline KI solution, at the end, the iodine entrapped in a solution on titration as above required 1.5 mL of $0.01 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. Calculate volume $\%$ of O_{3} in sample.
8. $\quad 1.249 \mathrm{~g}$ of a sample of pure BaCO_{3} and impure CaCO_{3} containing some CaO was treated with dil. HCl and it evolved 168 ml of CO_{2} at NTP. From this solution, BaCrO_{4} was precipitated, filtered and washed. The precipitate was dissolved in dilute sulphuric acid and diluted to 100 ml .10 ml of this solution, when treated with KI solution, liberated iodine which required exactly 20 ml of $0.05 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Calculate the percentage of CaO in the sample.
9. In a quality control analysis for sulphur impurity 5.6 g steel sample was burnt in a stream of oxygen and sulphur was converted into SO_{2} gas. The SO_{2} was then oxidized to sulphate by using $\mathrm{H}_{2} \mathrm{O}_{2}$ solution to which had been added 30 mL of 0.04 M NaOH . The equation for reaction is:

$$
\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

22.48 mL of 0.024 M HCl was required to neutralize the base remaining after oxidation reaction. Calculate \% of sulphur in given sample.
10. A granulated sample of aircraft alloy (Al, Mg, Cu) weighing 8.72 g was first treated with alkali and then with very dilute HCl , leaving a residue. The residue after alkali boiling weighed 2.10 g and the acid insoluble residue weighed 0.69 g . What is the composition of the alloy?
11. 2.480 g of KClO_{3} are dissolved in conc. HCl and the solution was boiled. Chlorine gas evolved in the reaction was then passed through a solution of KI and liberated iodine was titrated with 100 mL of hypo. 12.3 mL of same hypo solution required 24.6 mL of 0.5 N iodine for complete neutralization. Calculate \% purity of KCIO_{3} sample.
12. P and Q are two elements which forms $P_{2} Q_{3}$ and $P Q_{2}$. If 0.15 mole of $P_{2} Q_{3}$ weights 15.9 g and 0.15 mole of $P Q_{2}$ weights 9.3 g , what are atomic weights of P and Q ?
13. 25 mL of a solution containing Fe^{2+} and Fe^{3+} sulphate acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ is reduced by 3 g of metallic zinc. The solution required 34.25 mL of $\mathrm{N} / 10$ solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ for oxidation. Before reduction with zinc, 25 mL of the same solution required 22.45 mL of same $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Calculate the strength of FeSO_{4} and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in g/litre of solution.
14. 50 mL solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ was treated with excess $\mathrm{KI}(\mathrm{s})$ and the solution was acidified with acetic acid. The liberated iodine required $40 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution for the end point using starch as indicator. Find the "molarity" and "volume strength" of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.
15. 2.0 g sample of $\mathrm{KMnO}_{4}(\mathrm{MW}=158)$ containing some inert materials was dissolved in water acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ resulting solution was treated with 62 mL 0.5 M oxalic acid solution. The excess of oxalic acid was back titrated with $20 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. Calculate percent purity of KMnO_{4} sample.

PREVIOUS YEAR IIT-JEE QUESTIONS

1. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
(A) +3
(B) +2
(C) +1
(D) -1
[IIT 1991]
2. The oxidation states of the most electronegative element in the products of the reaction, BaO_{2} will dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
(A) 0 and -1
(B) -1 and -2
(C) -2 and 0
(D) -2 and -1
[IIT 1991]
3. Read the following statement and explanation and answer as per the options given below :

Statement-1 : In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume required at the equivalence point is twice that of the acid required using phenolphthalein indicator.

Statement-2: Two moles of HCl are required for the complete neutralization of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
[IIT 1991
4. For the redox reaction: $2 \mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, the correct coefficients of the reactants for the balanced reaction are

	MnO_{4}^{-}	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	H^{+}
(A)	2	5	16
(B)	16	5	2
(C)	5	16	2
(D)	2	16	5

5. The number of moles of KMnO_{4} that will be needed to react completely with one mole of ferrous oxalate in acidic solution is
(A) $\frac{3}{5}$
(B) $\frac{2}{5}$
(C) $\frac{4}{5}$
(D) 1
[IIT 1997]
6. The normality of 0.3 M phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is
(A) 0.1
(B) 0.9
(C) 0.3
(D) 0.6
[IIT 1999]
7. The oxidation number of sulphur in $\mathrm{S}_{8}, \mathrm{~S}_{2} \mathrm{~F}_{2}, \mathrm{H}_{2} \mathrm{~S}$ respectively, are
(A) $4,2,3$
(B) $0,3,2$
(C) $0,1,-2$
(D) $0,-2,-2$
[IIT 1999]
8. Amongst the following identify the species with an atom in +6 oxidation state
(A) MnO_{4}^{-}
(B) $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
(C) NiF_{6}^{2-}
(D) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
[IIT 2000]
9. The reaction, $3 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$, is a example of
(A) oxidation reaction
(B) reduction reaction
(C) disproportionation reaction
(D) decomposition reaction
10. An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 ml . The volume of 0.1 N NaOH required to completely neutralize 10 ml of this solution is
(A) 40 ml
(B) 20 ml
(C) 10 ml
(D) 4 ml
[IIT 2001]
11. In the standardization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by iodometry, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
(A) (molecular weight)/2
(B) (molecular weight)/6
(C) (molecular weight)/6
(D) same as molecular weight
[IIT 2001]
12. How many moles of electron weight one kilogram?
(A) 6.023×10^{23}
(B) $\frac{1}{9.108} \times 10^{31}$
(C) $\frac{6.023}{9.108} \times 10^{54}$
(D) $\frac{1}{9.108 \times 6.023} \times 10^{8}$
[IIT 2008]
13. Which has maximum number of atoms?
(A) 24 g of $\mathrm{C}(12)$
(B) 56 g of Fe (56)
(C) 27 g of $\mathrm{Al}(27)$
(D) 108 g of $\mathrm{Ag}(108)$
[IIT 2003]
14. Mixture $\mathrm{X}=0.02 \mathrm{~mol}$ of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{BNr}\right] \mathrm{SO}_{4}$ was prepared in 2 litre of solution.

1 litre of mixture $\mathrm{X}+$ excess $\mathrm{AgNO}_{3} \rightarrow \mathrm{Y}$.
1 litre of mixture $\mathrm{X}+$ excess $\mathrm{BaCl}_{2} \rightarrow \mathrm{Z}$.
(A) $0.01,0.01$
(B) $0.02,0.01$
(C) $0.01,0.02$
(D) $0.02,0.02$
[IIT 2003]
15. The pair of the compounds in which both the metals are in the highest possible oxidation state is
(A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(B) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{MnO}_{4}^{-}$
(C) $\mathrm{TiO}_{3}, \mathrm{MnO}_{2}$
(D) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{MnO}_{3}$
[IIT 2004]
16. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is
(A) 3
(B) 4
(C) 5
(D) 6
[IIT 2007]

Subjective Type Questions

1. A solid mixture $(5.0 \mathrm{~g})$ consisting of lead nitrate and sodium nitrate was heated below $600^{\circ} \mathrm{C}$ until the weight of the residue was constant. If the loss in weight is 28.0 per cent, find the amount of lead nitrate and sodium nitrate in the mixture.
[IIT 1990]
2. Calculate the molality of 1 litre solution of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (weight/volume). The density of the solution is $1.84 \mathrm{~g} / \mathrm{ml}$.
[IIT 1990]
3. A solution of 0.2 g of a compound containing Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions on titration with $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ consumes 22.6 ml . of the oxidant. The resultant solution is neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$, acidified with dil. acetic acid and treated with excess KI. The liberated iodine requires 11.3 ml of $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{3}$ solution for complete reduction. Find out the molar ratio of Cu^{2+} to $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ in the compound. Write down the balanced redox reactions involved in the above titrations.
[IIT 1991]
4. A 1.0 g sample of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100.0 ml . An aliquot of 25.0 ml of this solution requires 17.0 ml of 0.0167 M of solution of an oxidant for titration. Calculate the number of electrons taken up by the oxidant in the reaction of the above titration.
[IIT 1991]
5. A 2.0 g sample of a mixture containing sodium carbonate, sodium bicarbonate and sodium sulphate is gently heated till the evolution of CO_{2} ceases. The volume of CO_{2} at 750 mm Hg pressure and at 298 K is measured to be 123.9 ml . A 1.5 g of the same sample requires 150 ml of $(\mathrm{M} / 10) \mathrm{HCl}$ for complete neutralization. Calculate the $\%$ composition of the components of the mixture.
[IIT 1992]
6. One gram of commercial AgNO_{3} is dissolved in 50 ml . of water. It is treated with 50 ml . of a KI solution. The silver iodide thus precipitated in filtered off. Excess of KI in the filtrate is titrated with $(\mathrm{M} / 10) \mathrm{KIO}_{3}$ solution in pressure of 6 MHCl till all I^{-}ions are converted into ICl. It requires 50 ml . of $(\mathrm{M} / 10) \mathrm{KIO}_{3}$ solution. 20 ml of the same stock solution of KI requires 30 ml . of $(\mathrm{M} / 10) \mathrm{KIO}_{3}$ under similar conditions. Calculate the percentage of AgNO_{3} in the sample.
(Reaction: $\mathrm{KIO}_{3}+2 \mathrm{KI}+6 \mathrm{HCl} \rightarrow 3 \mathrm{ICl}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$)
[IIT 1992]
7. Upon mixing 45.0 ml . of 0.25 M lead nitrate solution with 25.0 ml of 0.10 M chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed? Also, calculate the molar concentrations of the species left behind in the final solution. Assume that lead sulphate is completely insoluble.
[IIT 1993]
8. The composition of a sample of Wustite is $\mathrm{Fe}_{0.93} \mathrm{O}_{1.00}$. What percentage of the iron is present in the form of $\mathrm{Fe}(\mathrm{III})$?
[IIT 1994]
9. $8.0575 \times 10^{-2} \mathrm{~kg}$ of Glauber's salt is dissolved in water to obtain $1 \mathrm{dm}^{3}$ of a solution of density $1077.2 \mathrm{~kg} \mathrm{~m}^{-3}$. Calculate the molarity, molality and mole fraction of $\mathrm{Na}_{2} \cdot \mathrm{SO}_{4}$ in the solution.
[IIT 1994]
10. A 3.00 g sample containing $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and an inert impure substance, is treated with excess of KI solution in presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The entire iron is converted into Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to 100 ml . A 20 ml of the diluted solution requires 11.0 ml of $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution to reduce the iodine present. A 50 ml of the diluted solution, after complete extraction of the iodine requires 12.80 ml of $0.25 \mathrm{M} \mathrm{KMnO}_{4}$ solution in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ medium of the oxidation of Fe^{2+}. Calculate the percentage of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in the original sample.
[IIT 1996]
