Stoichiometry: Answer

Answer Key 2
Conceptual Questions 4
Single Correct Choice Questions 4
Level-I 4
Level-II 8
Level-III 13
More Than One Answer Questions 15
Level-I 15
Level-II 18
Level-III 21
Passage 21
Match The Column 23
Assertion/Reason Questions 23
Integer Answer Type Questions 25
Subjective Questions 26
Previous Year IIT-JEE Questions 32

ANSWER KEY

Conceptual Questions

1. (B)
2. (A)
3. (D)
4. (A)
5. (C)
6. (A)
7. (B)
8. (D)
9. (A)
10. (C)

SINGLE CORRECT CHOICE

Level I

1.	(B)	2.	(D)	3.	(C)	4.	(A)	5.	(A)
6.	(B)	7.	(D)	8.	(B)	9.	(A)	10.	(B)
11.	(B)	12.	(B)	13.	(B)	14.	(B)	15.	(B)
16.	(B)	17.	(C)	18.	(D)	19.	(D)	20.	(A)
21.	(C)	22.	(A)	23.	(B)	24.	(C)	25.	(A)
					Level II				
26.	(B)	27.	(B)	28.	(C)	29.	(B)	30.	(D)
31.	(A)	32.	(B)	33.	(B)	34.	(C)	35.	(C)
36.	(C)	37.	(C)	38.	(A)	39.	(B)	40.	(C)
41.	(C)	42.	(D)	43.	(D)	44.	(D)	45.	(A)
46.	(A)	47.	(A)	48.	(A)	49.	(D)	50.	(C)

Level III

51.

(D) 52 .
(D) 53 .
(D) 54 .
(D) $55 . \quad$ (D)
56.
(D) 57 .
(B) 58 .
(B) 59 .
(A) 60 .
(B)

MORE THAN ONE CORRECT CHOICE

Level I

STOICHIOMETRY

Comprehension

Passage-1	1.	(A)	2.	(D)	3.	(A)
Passage 2	4.	(B)	5.	(A)	6.	(B)
Passage 3	7.	(A)	8.	(C)	9.	(B)
Passage 4	10.	(D)	11.	(B)	12.	(D)

Matrix Matching

1. $\mathrm{A}-\mathrm{r}, \mathrm{t} \mathrm{B}-\mathrm{p}, \mathrm{t}, \mathrm{C}-\mathrm{q}, \mathrm{D}-\mathrm{s}$
2. $A-r, B-t, C-p, D-s$
3. $A-q, t, B-p, C-r, t, D-s, t$

Assertion Reason

1.

(A) 2
(B) 3 .
(A) 4 .
(D) 5 .
(C)
6.
(B) 7 .
(B) 8 .
(C) $\quad 9$.
(A) $\quad 10$. (B)

Integer Type Questions

1. 4
2. 2
3. 4
4. 1
5. 2
6.6
6. 1
7. 3
8.
9.

Subjective Type Questions

| $1.241 .66 \mathrm{ml} ;$ | $2.0 .30625 ;$ | $3.42 \%, 26.5 \%, 31.5 \%$ | $4.1 .2 \times 10^{21}$ | 5.130 .16 .1 .847 g | 7. |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $1.847 \times 10^{-30} \%$ | $8.14 .09 \%$ | $9.0 .1875 \%$ | $10.75 .9,16.2,7.9$ | $11.82 .32 \%$ | $12.18,26$ |
| $13.13 .64 \mathrm{~g} /$ litre | $14.2 .2415 .79 \%$ | | | | |

$13.13 .64 \mathrm{~g} / \mathrm{litre} \quad 14.2 .2415 .79 \%$

Previous Year IIT-JEE Question

1.

(B)
2. (B)
4.
(A) 5 .
(A)
6.
(D)
7.
(C)
8.
(D) 9 .
(C) 10 .
(A)
11.
(C) 12 .
(D) 13 .
(A) 14 .
(A) 15
(B)
16. (D)

HINT AND SOLUTIONS

CONCEPTUAL QUESTIONS

1. (B) 6 moles $\mathrm{KHC}_{2} \mathrm{O}_{4}=2$ moles $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

1 moles $\mathrm{KHC}_{2} \mathrm{O}_{4}{ }^{\circ} 2 / 6=1 / 3$ moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
2. (A) In $\mathrm{H}_{2} \mathrm{SO}_{4}$, sulphur has +6 oxidation state.
3. In carbonyl compounds metal has zero oxidation state.
4. (i) $\stackrel{+3}{\mathrm{C}_{2}} \mathrm{O}_{4}^{--} \rightarrow 2 \stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}$ oxidation
(ii) $\stackrel{+6}{\mathrm{~S}_{4}^{--}} \rightarrow \stackrel{+4}{\mathrm{~S}_{4}} \mathrm{O}_{3}^{--}$reduction
(iii) $\stackrel{+6}{\mathrm{MnO}_{4}^{--}} \rightarrow \stackrel{+7}{\mathrm{Mn}^{-}} \mathrm{O}_{4}^{-}$oxidation
(iv) $\mathrm{Fe}^{+3} \rightarrow \mathrm{Fe}^{+2}$ reduction
5. $\quad \stackrel{0}{\mathrm{C}} \mathrm{l}_{2}+\mathrm{OH}^{-} \rightarrow \stackrel{-1}{\mathrm{C}} \mathrm{I}^{-}+\stackrel{+5}{\mathrm{C}} \mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
6. (D) HNO_{2} can get oxidized and reduced .
7. $3 \stackrel{0}{\mathrm{C}}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Cl}^{-}+\stackrel{+5}{\mathrm{C}} \mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
8. $\quad 3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{--}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\stackrel{+5}{\mathrm{BrO}_{3}^{-}}+6 \mathrm{HCO}_{3}^{-}$
9. $\stackrel{0}{\mathrm{C}} \mathrm{I}_{2}+\mathrm{OH}^{-} \rightarrow \stackrel{+1}{\mathrm{C}} \mathrm{IO}^{-}+\stackrel{-1}{\mathrm{C}} \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\stackrel{+1}{\mathrm{Cu}_{2}} \mathrm{O}+2 \mathrm{H}^{+} \rightarrow \stackrel{0}{\mathrm{C}} \mathrm{u}+\stackrel{+2}{\mathrm{C}} \mathrm{u}^{+2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{HC}_{\mathrm{CuCl}}^{2} \rightarrow \stackrel{0}{\mathrm{C}} \mathrm{u}+\stackrel{+2}{\mathrm{C}} \mathrm{u}^{+2}+4 \mathrm{Cl}^{-}+2 \mathrm{H}^{+}$
10. $2 \mathrm{FeS}_{2}+\frac{11}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}$
\because two moles of FeS_{2} losing $22 \mathrm{e}^{-}$
\because n-factor of $\mathrm{FeS}_{2}=11$

SINGLE CORRECT CHOICE

LEVEL-I

1. $\mathrm{CaCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\mathrm{n}=\frac{4.31}{143.5}
$$

moles of $\mathrm{CaCl}_{2}=\frac{4.31}{143.5} \times \frac{1}{2}=0.015$
2. $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{n}=\frac{25 \times 0.75}{1000}
$$

Moles of CaCO_{3} required $=\frac{25 \times 0.75}{1000} \times \frac{1}{2}$
Mass of $\mathrm{CaCO}_{3}=\frac{25 \times 0.75}{1000} \times \frac{1}{2} \times 100=0.9375 \mathrm{gm}$
3. $4 \mathrm{HCl}+\mathrm{MnO}_{2} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{n}=\frac{5}{87}
$$

Moles of HCl reacted $=\frac{5}{87} \times 4=0.05747$
Mass of $\mathrm{HCl}=0.05747 \times 36.5=8.4 \mathrm{gm}$
4.

I_{2}	$+\underset{2}{2 \mathrm{Cl}_{2}}$	®	ICl	+	ICl_{3}
254 gm	142 gm		1	$:$	1
25.4 gm	14.2 gm		0.1	$:$	0.1

but Cl_{2} given is only 12.2 gm (less than normal ratio hence limiting reagent)
$14.2 \mathrm{gm} \mathrm{Cl}_{2}$ produces ${ }^{\circledR} \quad 0.1$ moles of each
12.2 gm
(®) $=\frac{0.1}{14.2} \times 12.2=0.086$ mole of each
hence molar ratio remain equal $(1: 1)$
5. $2 \mathrm{Fe}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2}$
$54 \mathrm{gm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad$ convert 112 gm Fe to it's oxide
189 m ® $\frac{112}{54} \times 18=37.3 \mathrm{gm}$
6. $\mathrm{ClO}^{-}+\mathrm{Cr}_{2} \mathrm{OX} \longrightarrow \mathrm{Cl}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

no. of eq. of $\mathrm{ClO}^{-}=$no. of eq. of $\mathrm{Cr}_{2} \mathrm{OX}$
$0.15^{\prime} 2=\frac{12.6}{(104+16 x)} \times 2(6-x)$
or $31.2+4.8 \mathrm{x}=151.2-25.2 \mathrm{x}$
hence formula $=\mathrm{Cr}_{2} \mathrm{O}_{4}$ or CrO_{2}
7. $\mathrm{S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2}$
moles of SO_{2} produced from 8 gm of sulphur $=16 / 64=0.25$
$\mathrm{SO}_{2}+\mathrm{Cl}_{2}$ water $\longrightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{Cl}^{-}$
moles of SO_{4}^{2-} produced $=$ moles of $\mathrm{SO}_{2}=0.25$
now $\mathrm{SO}_{4}^{2-}+\mathrm{BaCl}_{2} \longrightarrow \mathrm{BaSO}_{4}+2 \mathrm{Cl}^{-}$
moles of BaSO_{4} produced $=$ moles of $\mathrm{SO}_{4}^{2-}=0.25$
8. $\mathrm{Ag} \mathrm{NO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{AgCl}+\mathrm{H}+\mathrm{NO}_{3}^{-}$
$170 \mathrm{gm} \quad 143.5 \mathrm{gm}$
$\because 143.5 \mathrm{gm} \mathrm{AgCl}$ is produced by 170 gm of AgNO_{3}
$\therefore 2.125 \mathrm{gm} \mathrm{AgCl}$ is produced by $\frac{170 \times 2.125}{143.5}=2.517$ of AgNO_{3}
Now for the reaction eq. of $\mathrm{AgNO}_{3}=$ eq. of HCl
or $\frac{2.517}{170}=\frac{25}{1000} \times \mathrm{N}=0.6$
Hence N = 0.6
9. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

105
2 vol. H_{2} give 2 vol. of $\mathrm{H}_{2} \mathrm{O}$ vapours
$\therefore 10$ vol. $\mathrm{H}_{2} \mathrm{O}$ vapour will form
10. Let the mass of CaCl_{2} in sample $=x \mathrm{gm}$
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
$111 \mathrm{gm} \quad 100 \mathrm{gm}$
$\therefore 111 \mathrm{gm} \mathrm{CaCl}$ 2 produces $\longrightarrow 100 \mathrm{gm} \mathrm{CaCO}_{3}$
x gm CaCl 2 produces $\longrightarrow \frac{100 x}{111} \mathrm{gm} \mathrm{CaCO} 3$
$\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$
$100 \mathrm{gm} \quad 56 \mathrm{gm}$
$\therefore 100 \mathrm{gm} \mathrm{CaCO}_{3}$ produces $\longrightarrow 56 \mathrm{gm} \mathrm{CaO}$
$\left(\frac{100 x}{111}\right) g m \mathrm{CaCO}_{3}$ produces $\longrightarrow \frac{56}{100} \times \frac{100}{111} g m \mathrm{CaO}=\frac{56 x}{111} \mathrm{gm} \mathrm{CaO}$
since mass of CaO finally produced $=1.62 \mathrm{gm}=56 \mathrm{x} / 111$

$$
x=3.21 \mathrm{gm}
$$

$\%$ of CaO in sample $=\frac{3.21}{10} \times 100=32.1 \%$
11. mass of oxide $=2 \mathrm{gm}$
mass of metal $=1.6 \mathrm{gm}$
mass of oxygen $=0.4 \mathrm{gm}$
Eq. wt of metal $=\frac{1.6 \times 8}{0.4}=32$
12.
$2 \stackrel{N}{N}^{-1} \mathrm{H}_{2} \mathrm{OH} \rightarrow \stackrel{0}{\mathrm{~N}_{2}}$
n-factor $=1$
$\stackrel{+3}{\mathrm{~F}} \mathrm{e}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 2 \stackrel{+2}{\mathrm{~F}} \mathrm{eSO}_{4}$
n-factor $=2$
Eq. $w t=m w / 2$
13. $\stackrel{+6}{\mathrm{C}} \mathrm{rO}_{5} \rightarrow \stackrel{+3}{\mathrm{C}} \mathrm{r}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

No. of moles of electron required $=3$
14. In acidic medium
$\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{+2} \quad \mathrm{nf}=5 /$ mole
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{+3} \quad \mathrm{nf}=6 /$ mole
hence the amount of $\mathrm{Fe}(\mathrm{II})$ oxidized is more with $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
15. Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=100^{\prime} 0.2^{\prime} 2=40$

Meq. of $\mathrm{NaOH}=100{ }^{\prime} 0.2^{\prime} 1=20$
m. eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remains non neutralized $=20$
no. of gm eq of $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{N}^{\prime} \mathrm{V}$
$\frac{20}{100}=N \times \frac{200}{1000}, \quad \mathrm{~N}=0.1$
16. (B) $\xrightarrow{4+}{ }_{\mathrm{Mn} \mathrm{O}_{2}}$
$\mathrm{n}=3$
Molarity $=\frac{\text { Normality }}{\mathrm{n}-\text { factor }}=\frac{1.8}{3}=0.6$
17. (C) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}{ }^{(R)} \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (acid base reaction)
18. (D)

$$
\begin{aligned}
& \text { n-factor of } \mathrm{H}_{2} \mathrm{O}_{2}=2 \\
& \text { n-factor of } \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=61 \\
& \because \frac{\operatorname{mole}^{\text {of }} \mathrm{H}_{2} \mathrm{O}_{2}}{1 \text { mole of } \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}}=\frac{61}{2}
\end{aligned}
$$

\therefore mole of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{61}{2} \times 1=30.5$
19. (D)
$\mathrm{BaCO}_{3} \rightarrow \mathrm{BaO}+\mathrm{CO}_{2} \uparrow$
Molecular weight of $\mathrm{BaCO}_{3}=137+12+3 \times 16=197$
$\because 197 \mathrm{gm} \mathrm{BaCO} 3$ produces $22.4 \mathrm{LCO}_{2}(\mathrm{~g})$ at S.T.P.
$\therefore 9.85 \mathrm{gm}$ produces $\frac{22.4}{197} \times 9.85=1.12 L$ at S.T.P.
20. (D)
meq. of $\mathrm{HCl}=27.15 \times 0.245$
$\therefore \quad$ meq. of $\mathrm{Ba}(\mathrm{OH})_{2}=\mathrm{N} \times 20=27.15 \times 0.245$

$$
\mathrm{N}=\frac{27.15 \times 0.245}{20}=0.333 \mathrm{~N}
$$

as n-factor of $\mathrm{Ba}(\mathrm{OH})_{2}$ is $2 \quad \therefore \quad \mathrm{M}=0.333 / 2=0.166$
21. (C)

$$
\begin{aligned}
& \text { Moles of } \mathrm{N}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1 \times 36.9}{0.0821 \times 1000 \times 300} \\
& \quad=1.5 \times 10^{-3} \\
& \begin{array}{ll}
\therefore \quad & \text { moles of salt }=1.5 \times 10^{-3} \\
& \text { lit of salt }=1.5 \times 10^{-3} \times 140.5 \\
& =210.75 \times 10^{-3} \mathrm{mg} \\
& =210 \mathrm{mg}
\end{array}
\end{aligned}
$$

22. (a)
4% of NaOH is 100 gm solution $\rightarrow 4 \mathrm{gm} \mathrm{NaOH}$
so 1000 gm solution $\rightarrow 40 \mathrm{gm} \mathrm{NaOH}$
$\rightarrow 1$ mole NaOH
So 1000 ml solution $\rightarrow 1.2$ mole NaOH
Molarity $=1.2$
23. (b)
$4 \% \mathrm{NaOH}$ is 100 ml solution $\rightarrow 4 \mathrm{gm} \mathrm{NaOH}$
so 1000 ml solution $\rightarrow 40 \mathrm{gm} \mathrm{NaOH} \rightarrow 1$ mole NaOH
so molarity = 1
24. (c)

Three replaceable H so molarity $\times 3=$ Normality
25. (a)
$100 \times 0.01 \times 2=v \times 0.2 \times 2$
$\mathrm{v}=5 \mathrm{ml}$

Level-III

26. Let the number of sulphate ions in FeSO_{4} be x

The number of Fe^{2+} will $\mathrm{be}=$ number of sulphate $=\mathrm{x}$
The number of sulphate ions in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\mathrm{x}$

STOICHIOMETRY

The number of Fe^{3+} per $\mathrm{SO}_{4}{ }^{2-}=2 / 3$
The number of Fe^{3+} for $\mathrm{x} \mathrm{SO}_{4}{ }^{2-}=2 / 3 \mathrm{x}$
Ratio $=x: 2 / 3 x=3: 2$
Hence ans is B
27. Mass of nitrogen given $=7 \mathrm{~g}$

Mass of nitrogen reacted $=80 \%$ of $7 \mathrm{~g}=5.6 \mathrm{~g}$
$\mathrm{N}_{2}+3 / 2 \mathrm{O}_{2}{ }^{\circledR} \mathrm{N}_{2} \mathrm{O}_{3}$
$28 \mathrm{~g} \mathrm{~N}_{2}$ reacts with $48 \mathrm{~g} \mathrm{O}_{2}$ to give $\mathrm{N}_{2} \mathrm{O}_{3}$
$5.6 \mathrm{~g} \mathrm{of}_{2}$ will react with $\frac{48}{28} \times 5.6 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}$
$16 \mathrm{~g} \mathrm{O}_{2}$ has 6.022×10^{23} atoms
$\frac{48}{28} \times 5.6 \mathrm{~g} \mathrm{of}_{2}$ has $\frac{6.022 \times 10^{23}}{16} \times \frac{48}{28} \times 5.6$ atoms of $\mathrm{O}_{2}=3.6 \times 10^{23}$ atoms
Hence the answer is B
28. $\because 10 \mathrm{~L}$ vol. at $\mathrm{STP}=11.6 \mathrm{gm}$
$\therefore 22.4 \mathrm{~L}$ vol. $=\frac{11.6 \times 22.4}{10}$
M. $\mathrm{W}=26$
$\mathrm{EF}=\mathrm{CH}, \mathrm{MF}=\mathrm{C}_{2} \mathrm{H}_{2}$
29. (A) 2 gm atom of nitrogen $=28 \mathrm{gm}$
(B) 6×10^{23} atoms of C has mass $=12 \mathrm{gm}$
3×10^{23} atoms of C has mass $=\frac{12 \times 3 \times 10^{23}}{6 \times 10^{23}}=6 \mathrm{gm}$
(C) 1 mole of S has mass $=32 \mathrm{gm}$
(D) 7.0 gm of Ag

So, lowest mass $=6 \mathrm{gm}$ of C .
30. $\mathrm{BaCO}_{3} \longrightarrow \mathrm{BaO}+\mathrm{CO}_{2} \uparrow$

Molecular weight of $\mathrm{BaCO}_{3}=137+12+3 \times 16=197$
197 gm produces 22.4 L at S.T.P. $\therefore 9.85 \mathrm{gm}$ produces at S.T.P., $\quad \frac{22.4}{197} \times 9.85=1.12$
31. $N V=N_{1} V_{1}+N_{2} V_{2}$
$0.2 \times 2=0.5 \mathrm{x}+0.1(2-\mathrm{x})$
$0.4=0.5 x+0.2-0.1 x \quad \Rightarrow 0.2=0.4 x$
$\mathrm{x}=\frac{1}{2} L=0.5 L$
32. 22400 cc of gas at STP has 6×1023 molecules
$\therefore \quad 1.12 \times 10^{-7}$ of gas at STP has
$\frac{6 \times 10^{23} \times 1.12 \times 10^{-7}}{22400}=0.3 \times 10^{14}=3 \times 10^{12}$
33. $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Atomic wt. of $\mathrm{BaCO}_{3}=137+12+16 \times 3=197$
No. of mole $=\frac{\mathrm{wt} \text {. of substance }}{\text { mol wt. }}$
1 mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ gives 1 mole of BaCO_{3}
$\therefore 205$ mole of $\mathrm{Ba}(\mathrm{OH})_{2}$ will give .205 mole of BaCO_{3}
\therefore wt. of 0.205 mole of BaCO3 will be $=40.5$
34. (a) V_{0}^{+2} ® $\stackrel{+5 / 2}{\mathrm{~V}_{0}} \mathrm{O}_{5}$
(b) $\quad \mathrm{Na} ® \mathrm{Na}^{+}+\begin{gathered}\text { oxidation } \\ \text { oxidation }\end{gathered}$
(c) $\mathrm{CrO}_{4}^{+6} ®{ }^{+6} \stackrel{+6}{\mathrm{C}} \mathrm{r}_{2} \mathrm{O}_{7}^{-2}$
(d) $\mathrm{Zn}^{2+}(\mathbb{}) \mathrm{Zn}_{\text {(Reduction) }}$
35. $\mathrm{MnO}_{4}^{-} ® \mathrm{MnO}_{4}^{-2} \quad=\quad \mathrm{n}=1$
$\stackrel{+7}{\mathrm{MnO}_{4}^{-} ®} \stackrel{+6}{\mathrm{MnO}_{2}}=\mathrm{n}=3$
$\stackrel{+7}{\mathrm{MnO}_{4}^{-} ®} \stackrel{+3}{\mathrm{MnO}_{3}}=\mathrm{n}=4$
$\stackrel{+7}{\mathrm{MnO}_{4}^{-} ® \mathrm{Mn}^{+2}}=\mathrm{n}=5$
then $1,3,4,5$ then (C) is correct)
36. $\quad \mathrm{Cl}_{2}{ }^{(} \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$

This is the example of disproportionation (C) is correct.
37. 1 mole of $\stackrel{-2}{\mathrm{~N}_{2}} \mathrm{H}_{4} ® \stackrel{+\mathrm{y}}{\mathrm{N}}+10 \mathrm{e}^{-}$

$$
\begin{aligned}
& =10=\text { change in oxidation number } \\
& =10=2(y+2) \\
& =10=2 y+4 \\
& 2 y=6 \\
& =y=+3
\end{aligned}
$$

(C) is correct.
38. 1 mole $\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{\circ} \quad \mathrm{x}$ mole of MnO_{4}^{-}in acidic medium

$$
\begin{aligned}
& =\text { gm eq. of } \mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}=\text { gm eq. of } \mathrm{MnO}_{4}^{-} \\
& =1 \times 6=x+5
\end{aligned}
$$

$$
\mathrm{x}=\frac{6}{5} \text { mole }
$$

the ratio is $x: y=2: 1$

$$
\begin{aligned}
& 1 \text { mole } \mathrm{FeC}_{2} \mathrm{O}_{4}{ }^{\text {o }} \quad \mathrm{y} \text { mole } \mathrm{MnO}_{4}^{-} \\
& 1 \times 3=\mathrm{y} \times 5=\mathrm{y}=3 / 5
\end{aligned}
$$

(A) is correct.
39. 3×10^{-3} mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\circ} \quad 4.5 \times 10^{-3}$ mole of $\mathrm{X}^{+\mathrm{n}}$

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{X}^{+\mathrm{n}} \text { ® } \stackrel{+5}{\mathrm{X}} \mathrm{O}_{3}^{-}+\mathrm{Cr}^{+3}
$$

gm eq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$ gm eq. of $\mathrm{X}^{+\mathrm{n}}$

$$
\begin{aligned}
& 3^{\prime} 10^{-3 \prime} 6=4.5^{\prime} 10^{-3 \prime}(5-\mathrm{n})=(5-\mathrm{n}) \\
& =4=5-\mathrm{n} \\
& =\mathrm{n}=5-4=(+1)
\end{aligned}
$$

the (B) is correct
40. $\mathrm{X}^{+\mathrm{n}}$ is oxidized to XO_{4}^{-2} and XO_{4}^{-}

For I, the change in oxidation number

$$
=(6-n)
$$

$$
(6-n)=4 \times n \text { factor of oxidising agent }
$$

For II, the change in oxidation number $=7-6=1$
$=1 \mathrm{Xn}$ factor of oxidizing agent.
hence the n-factor of the oxidizing agent $=1$
Hence $\quad 6-\mathrm{n}=4 \mathrm{X} 1$
Hence $\mathrm{n}=2$
(C) is correct.
41. $\stackrel{+3}{\mathrm{As}_{2}} \stackrel{-2}{\mathrm{~S}}_{3}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \circledR{ }^{\circledR} \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\stackrel{+5}{\mathrm{AsO}_{4}^{-3}}+\stackrel{+6}{\mathrm{SO}_{4}^{-2}}$
n -factor of $\mathrm{As}_{2} \mathrm{~S}_{3}=2 \times 2 \backslash 4 \mid 8 \times 3+24+4=28$.
$\mathrm{n}=28$
$\mathrm{E}=\frac{\mathrm{M}}{28}$
(C) is correct
42. In chemical reaction

$$
\begin{aligned}
& 2 \stackrel{+2}{\mathrm{C}} \mathrm{uSO}_{4}+4 \mathrm{KI} ®{ }_{\mathrm{n}}^{\mathrm{n}} \mathrm{C} \\
& \mathrm{C} \mathrm{u}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2} \\
&
\end{aligned}
$$

(D) is correct
43. Volume m of HCl neutralized by $\mathrm{NaOH}=($ Caustic soda $)=\mathrm{V}_{1}$
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} ; 0.1 \times \mathrm{V}_{1}=0.2 \times 30 ; \mathrm{V}_{1}=60 \mathrm{ml}=40 \mathrm{ml}$
40 ml 0.1 HCl is now neutralized by
$\mathrm{KOH}(0.25 \mathrm{~N}) \longrightarrow(\mathrm{HCl}) \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}(\mathrm{KOH})$
$0.1 \times 40=0.25 \times \mathrm{V}_{2} ; \quad \mathrm{V}_{2}=16 \mathrm{ml}$
44. $\quad 10 \mathrm{ml} 0.1 \mathrm{M} \mathrm{FeSO}_{4}{ }^{\circ} \quad \mathrm{KMnO}_{4}$ in acidic medium gm. of $\mathrm{FeSO}_{4}=$ gm eq. of KMnO_{4}
Mill eq.n of 10 ml of 0.02 M

$$
\begin{aligned}
& =10 \times 0.02 \times 5 \\
& =10 \times 0.1=1
\end{aligned}
$$

(D) is correct
45. $\quad 1 \mathrm{M} \mathrm{KMnO}_{4} \mathrm{~mol} 1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

For the oxidation of Fe^{2+} in acidic medium.
gm eq. of $1 \mathrm{M} \mathrm{KMnO}_{4}=$ gm eq. of Fe^{2+}

$$
\begin{aligned}
& 1 \times 1 \times \mathrm{v}=1 \times 5=\times \mathrm{v} \\
& =1 / 5=\text { Volume of } \mathrm{KMnO}_{4},
\end{aligned}
$$

gm eq. of $1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$ gm eq. of Fe^{2+}
$=1 \times 6 \times \mathrm{v}=1 \times 1 \times \mathrm{v}$
Volume $=1 / 6$
of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
then more amount of Fe^{2+} oxidized by ' KMnO_{4} ' then (a) is correct
46. $\quad \mathrm{KMnO}_{4}{ }^{\text {o }} \quad 100 \mathrm{mg}$ of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in acidic solution?
gm eq. of $\mathrm{KMnO}_{4}=$ gm eq. of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
& \frac{0.1^{\prime} \mathrm{V}^{\prime} 5}{1000}=\frac{100^{\prime} 10^{-3 \prime} 3}{\mathrm{M}} \quad\left(\mathrm{Q} \mathrm{FeC}_{2} \mathrm{O}_{4}\right) \\
& =\frac{0.1^{\prime} \mathrm{V}^{\prime} 5}{1000}=\frac{0.1^{\prime} 3}{144} \\
& \mathrm{C}=\frac{0.1^{\prime} 3^{\prime} 1000}{0.1^{\prime} 144^{\prime} 5}=\frac{600}{144}=\frac{150}{36}=4.1 \mathrm{ml}
\end{aligned}
$$

(A) is correct
47. 60 ml of $0.1 \mathrm{M} \mathrm{KMnO}_{4}{ }^{\circ}$ excess of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$ gm eq. of $\mathrm{KMnO}_{4}=$ gm eq. of $\mathrm{FeC}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
& =\frac{60^{\prime} 0.1^{\prime} 5}{1000}=\text { Moles' } 3 \\
& =\text { Moles }=\frac{60^{\prime} 0.1^{\prime} 5}{1000^{\prime} 3}=\frac{0.5^{\prime} 6}{3^{\prime} 100}=10^{-2} \mathrm{~mole}
\end{aligned}
$$

STOICHIOMETRY

1 mole $\mathrm{FeC}_{2} \mathrm{O}_{4}$ given 2 mole
then $\frac{1}{100}$ moles gives $=\frac{2}{100}$ more
Volume of $\mathrm{CO}_{2}=\frac{2}{100}^{\prime} 22.4$ litre

$$
\begin{aligned}
& =\frac{2}{100} \cdot 22.400 \mathrm{ml} \\
& =448 \mathrm{ml}
\end{aligned}
$$

(A) is correct
48. $\quad 10.78 \mathrm{gm}$ of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in 550 ml of 0.4 N

$$
\begin{aligned}
& \mathrm{N}=\frac{\mathrm{w}^{\prime} 1000}{\mathrm{E}^{\prime} \text { Volume }} \\
& =0.4=\frac{10.78^{\prime} 1000}{\mathrm{E}^{\prime} 550} \\
& \mathrm{E}=\frac{10.78^{\prime} 1000}{550^{\prime} 0.4}=\frac{1078}{55^{\prime} 0.4} \\
& \mathrm{E}=49 \\
& \mathrm{E}=\frac{M}{\mathrm{E}}=\frac{98}{49}=2 \\
& =(\mathrm{n}=2)
\end{aligned}
$$

that means this acid $\mathrm{H}_{3} \mathrm{PO}_{4}$ has been neutralised by to ' HPO_{4}^{-2}
Hence (A) is correct.
49. 1 vol. $=0.303 \% \therefore 20$ vol. $=20 \times 0.303 \%=6.06 \%$
50. Let the volume the of $\mathrm{H}_{2} \mathrm{O}_{2}=x \mathrm{~mL}$

Then m eq. of $\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{m}$ eq. of O_{2}
$\mathrm{x} \mathrm{mL} \times \frac{22.4}{5.6} N=\frac{2240}{22400} \times 4 \times 1000 \quad \mathrm{x}=100 \mathrm{~mL}$

Level-III

51. n-factor of $\mathrm{FeC}_{2} \mathrm{O}_{4}=3$
and n-factor of $\mathrm{Fe}(\mathrm{SCN})_{2}=33$
Let the vol. of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ required for oxidation $=x \mathrm{~mL}$, then
m eq. of $\mathrm{FeC}_{2} \mathrm{O}_{4}=\mathrm{m}$ eq. of $\mathrm{Fe}(\mathrm{SCN})_{2}$
$x \times 1 \times 3=100 \times 1 \times 33$
$x=1100 \mathrm{~mL}=1.1$ litre
52. meq. of hypo $=m$ eq. of Cu^{2+}
$=25 \mathrm{~m}$ eq of $\mathrm{Cu}^{2+}(\mathrm{n}=1)=25$ mole of Cu^{2+}

$\Rightarrow \frac{\text { m mole of } \mathrm{Cu}^{+2}}{\text { m mole of oxalic acid }}=\frac{25}{25}=1 \Rightarrow \frac{\text { mole of } \mathrm{Cu}^{+2}}{\text { mole of oxalic acid }}=1: 1$
53. n-factor of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}=10$
n-factor of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=61$
$\because \frac{\text { mole of } \mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}}{1 \text { mole of } \mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}}=\frac{61}{10} \quad \therefore$ mole of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}=\frac{61}{10} \quad 1=6.1$
54. 109% labeled oleum will contain $9 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}, 40 \mathrm{~g}$ free $\mathrm{SO}_{3}, 60 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
$40 \mathrm{~g}($ free $) \mathrm{SO}_{3}=\frac{1}{2} \mathrm{moleSO}_{3}($ free $)=\mathrm{y}$
$60 \mathrm{~g}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\frac{60}{98}=x$ mole $_{2} \mathrm{SO}_{4}=\mathrm{x} \Rightarrow \frac{x+y}{x-y}=9.9$
55. 366 ppm of HCO_{3}^{-}ions means
$=\frac{366}{61} m$ moles of HCO_{3}^{-}ions per litre solution $=6 \mathrm{~m}$ moles of HCO_{3}^{-}ions per litre solution
$=3 \mathrm{~m}$ moles of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=3 \mathrm{~mole}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is required
$=3 \times 74 \mathrm{mg}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ per litre required $=\frac{3 \times 74}{2} \mathrm{mg}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ per 500 mL solution is required $=0.111 \mathrm{~g}$
56. m eq. of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ reacted $=\mathrm{m}$ eq. of $\mathrm{H}_{2} \mathrm{O}_{2}$ reacted $=\frac{56 \times 100}{5.6}=1000 \mathrm{~m}$ eq. of $\mathrm{H}_{2} \mathrm{O}_{2}=1$ eq. of $\mathrm{H}_{2} \mathrm{O}_{2}$
\therefore moles of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}(\mathrm{n}$-factor $=10)=0.1 \mathrm{~mole}$
\therefore wt. of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}=0.1 \times 375 \mathrm{~g}=37.5 \mathrm{~g}$
$\%$ purity of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}=\frac{37.5}{55} \times 100=68.18 \%$
57. moles of I_{2} formed $=3 \times$ moles of $\mathrm{KIO}_{3}=3 \times \frac{0.57}{214}$
m eq. of I_{2} formed $(\mathrm{nf}=2)=3 \times \frac{0.57}{214} \times 2 \times 1000$
58. Element $\%(\mathrm{a})$ At. wt. (b) a / b Ratio

X	50	10	5	2
Y	50	20	25	1

Simplest formula $=X_{2} Y$

STOICHIOMETRY

59. Density $=1 \mathrm{~g} / \mathrm{ml}$ for water hence for water $1 \mathrm{~g}=1 \mathrm{ml}$ $0.0018 \mathrm{ml}=0.0018 \mathrm{gm}$

No. of moles $=\frac{\text { weight }}{\text { Molecular weight }}=\frac{0.0018}{18}=1 \times 10^{-4}$
\therefore No. of water molecules $=6.023 \times 10^{23} \times 1 \times 10^{-4}=6.023 \times 10^{19}$
60. $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

10 gm
90% pure $9 \mathrm{gm}=\frac{9}{100}$ mole
$\mathrm{CaCO}_{3} \equiv \mathrm{CO}_{2}=0.09 \mathrm{~mole}$
At NTP vol. $\mathrm{CO}_{2}=0.09 \times 22.4=2.016 \mathrm{~L}$

MORE THAN ONE ANSWER QUESTIONS

Level-I

1. (A), (B)
(A) $\mathrm{N}=\frac{3 \times 1000 \times 1}{60 \times 250}=0.2$
(B) $\mathrm{N}=\frac{5.7 \times 1000 \times 6}{342 \times 500}=0.2$
(C) $0.2 \times 2=0.4$
(D) $\frac{0.2 \times 1000}{500}=0.4$
2. (A), (C)
$(\mathrm{A}) \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow \mathrm{K}^{+}+\mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-}\left(\mathrm{n}_{\mathrm{f}}=61\right)$
(B) $\mathrm{Cu}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{3}\left(\mathrm{n}_{\mathrm{f}}=10\right)$
(C) $\mathrm{Fe}(\mathrm{SCN})_{3} \rightarrow \mathrm{Fe}^{3+}+\mathrm{SO}_{3}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-} \quad\left(\mathrm{n}_{\mathrm{f}}=48\right)$
(D) $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right] \rightarrow \mathrm{K}^{+}+\mathrm{Cu}^{2+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{-}\left(\mathrm{n}_{\mathrm{f}}=40\right)$
3. $(\mathrm{A}),(\mathrm{B}),(\mathrm{C}),(\mathrm{D})$

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{CrO}_{4} \Rightarrow 2+\mathrm{x}-8=0 \Rightarrow \mathrm{x}=+6 \\
& \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \Rightarrow 2+2 \mathrm{x}-14=0 \Rightarrow \mathrm{x}=+6 \\
& \mathrm{KCrO}_{3} \mathrm{Cl} \Rightarrow 1+\mathrm{x}-6-1=0 \Rightarrow \mathrm{x}=+6 \\
& \mathrm{Cr}\left(\mathrm{O}_{2}\right)_{2} \mathrm{O} \Rightarrow \mathrm{x}-2 \times 2-2=0 \Rightarrow \mathrm{x}=+6
\end{aligned}
$$

4. (B), (C), (D)

$$
3 \mathrm{Sn}^{+2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 3 \mathrm{Sn}^{+4}+2 \mathrm{Cr}^{+3}+7 \mathrm{H}_{2} \mathrm{O}
$$

(a) $x: y=\frac{3}{1} \Rightarrow 3: 1$
(b) $x+y+z=3+1+14=18$
(c) $\frac{\mathrm{a}}{\mathrm{b}}=\frac{3}{2} \Rightarrow 3: 2$
(d) $\mathrm{z}-\mathrm{c}=14-7=7$
5. $\quad(A),(B),(C),(D)$
6. (A), (B), (D)
7. $(\mathrm{A}),(\mathrm{B}),(\mathrm{D})$
8. (B),(D)
9. (B), (C)

Meq of $\mathrm{NaOH}=0.01(\mathrm{x}-\mathrm{y})$
and meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.02 \mathrm{y}$
$\therefore \mathrm{B}$ and C are possible.
10. $3 \mathrm{Sn}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 3 \mathrm{Sn}^{3+} 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
11. $2 \stackrel{+7}{\mathrm{MnO}_{4}^{-}}+4 \mathrm{H}^{+}+\stackrel{0}{\mathrm{~B}} \mathrm{r}_{2} \rightarrow 2 \stackrel{+2}{\mathrm{Mn}^{+2}}+2 \stackrel{+5}{\mathrm{BrO}_{3}^{-}}+2 \mathrm{H}_{2} \mathrm{O}$
n -factor for $\mathrm{MnO}_{4}^{-}=5$
Eq. $\mathrm{Wt}=\mathrm{M}_{\mathrm{x}} / 5$
n-factor for $\mathrm{Br}_{2}=10$
Eq. $\mathrm{Wt}=\mathrm{M}_{\mathrm{y}} / 10$
Ratio of n -factor ${ }_{\mathrm{M}}^{\mathrm{+2}} \mathrm{n}^{+2} \rightarrow \stackrel{+7}{\mathrm{M}} \mathrm{nO}_{4}^{-}$
$2{ }^{+5} \mathrm{BrO}_{3}^{-} \rightarrow \stackrel{0}{\mathrm{~B}} \mathrm{r}_{2}=1: 1$
12. $\mathrm{Fe}_{0.95} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$

Let x is the fraction of Fe^{+3} in the compound then $\mathrm{Fe}^{+2}=(0.95-\mathrm{x})$
$x \times 3+(0.95-x) \times 2-2=0$

$$
x=0.1
$$

13. $2 \mathrm{FeS}_{2}+\frac{11}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{SO}_{2}$
n-factor $=11$
Eq. Wt = M/11
14. NaOH and NaHCO_{3} in solution react together
$\mathrm{NaOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$40 \mathrm{gm} \quad 84 \mathrm{gm}$
$\frac{40}{40}=1 \mathrm{~mol} \frac{84}{84}=1 \mathrm{~mol}$
After reaction solution will have two moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 1 litre
For phenolphthalein m .Eq of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{m} . \mathrm{Eq}$ of HCl
$20 \times 2 \times 1=\mathrm{V} \times 1 \Rightarrow \mathrm{~V}=40 \mathrm{~mL}$
For methyl orange after first end point
m.Eq of $\mathrm{NaHCO}_{3}=\mathrm{m}$. Eq of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{m}$.Eq of HCl
$2 \times 20 \times 1=1 \times \mathrm{V} \Rightarrow \mathrm{V}=40 \mathrm{~mL}$
For methyl orange if used from very beginning
m. $\mathrm{Eq} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{m} . \mathrm{Eq}$ of $\mathrm{NaHCO}_{3}=\mathrm{m}$.Eq of HCl
$2 \times \mathrm{m} . \mathrm{Eq}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{m}$.Eq of HCl
$2 \times 20 \times 2=1 \times V \Rightarrow V=80 \mathrm{~mL}$
15. $\mathrm{Ba}\left(\stackrel{+7}{\mathrm{M}} \mathrm{nO}_{4}\right)_{2} \rightarrow 2 \stackrel{+2}{\mathrm{M}} \mathrm{n}^{++}$
n-factor $=10$
$\mathrm{m} . \mathrm{Eq}$ of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in $150 \mathrm{~mL} \Rightarrow 150 \times 10 \times \frac{1}{10}=150 \mathrm{~m} . \mathrm{Eq}$
m.Eq of $1 \mathrm{MFe}^{++} \rightarrow \mathrm{Fe}^{++}=150 \times 1=150 \mathrm{~m} . \mathrm{Eq}$
$\mathrm{m} . \mathrm{Eq}$ of $50 \mathrm{~mL} 1 \mathrm{M} \mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{+++}+2 \mathrm{CO}_{2}=50 \times 3=150 \mathrm{~m} . \mathrm{Eq}$
$\mathrm{m} . \mathrm{Eq}$ of $75 \mathrm{~mL} 1 \mathrm{M} \mathrm{C}_{2} \mathrm{O}_{4}^{--} \rightarrow 2 \mathrm{CO}_{2}=75 \times 2=150 \mathrm{~m} . \mathrm{Eq}$
m.Eq of $25 \mathrm{~mL} 1 \mathrm{M} \mathrm{Cr} \mathrm{O}_{7}^{--} \rightarrow 2 \mathrm{Cr}^{+3}=25 \times 6=150 \mathrm{~m} . \mathrm{Eq}$
16. \because molarity and normality involves the use of volume of solution. Volume changes with temperature hence normality and molarity change with temperature.
17. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
n-factor for $\mathrm{H}_{3} \mathrm{PO}_{4}=2$ (since $2 \mathrm{H}^{+}$ions are replaced)
eq. wt. $=\frac{M}{2}=\frac{98}{2}=49$
resulting solution of CaHPO_{4} have only one replaceable H^{+}
so $n f=1$
hence no. of eq = 1 for 1 mole so can be neutralized by 1 mole of KOH
eq of $\mathrm{CaHPO}_{4}=$ eq. of KOH
For complete neutralization - no. of eq. of $\mathrm{H}_{3} \mathrm{PO}_{4}=$ no. of eq. of $\mathrm{Ca}(\mathrm{OH})_{2}$
$1 \times 3=1.5 \times 2$
can be neutralized.
18. no. of eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ moles $\times n$ factor

$$
=1 \times 2=2
$$

no. of eq. of $\mathrm{Ca}(\mathrm{OH})_{2}=1 \times 2=2$ (neutralized)
no. of eq. of $\mathrm{NaOH}=2 \times 1=2 \quad$ (neutralized)
no. of eq. of $\mathrm{NH}_{3}=2 \times 1=2 \quad$ (neutralized)
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}^{2-}$
19. In presence of phenolphthalein to detect $\mathrm{I}^{\text {st }}$ end point.
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ (Full eq. of NaOH)
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCl}$ (1/2 eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$)
methyl orange is used to detect final end point. Where rest of $1 / 2$ eq of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will be neutralized
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{CO}_{3} \longrightarrow\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right)$
20. $3 \stackrel{+1}{\mathrm{C}} \mathrm{IO}^{-} \rightarrow \stackrel{+5}{\mathrm{C}} \mathrm{IO}_{3}^{-}+2 \stackrel{-1}{\mathrm{C}} \mathrm{I}^{-}$

It is a disproportionation reaction, which incluces both oxidation and reduction of same element

Level-II

21. (C,D)

$$
\begin{array}{ll}
\mathrm{CO}+\mathrm{CO}_{2} \\
\mathrm{a} & \mathrm{~b} \\
\therefore & \mathrm{a}+\mathrm{b}=1 \\
& \mathrm{CO}_{2}+2 \mathrm{NaOH}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& \text { Meq. of } \mathrm{CO}_{2}=\text { Meq. of } \mathrm{NaOH}=1 \times 1000 \\
\therefore & \text { Mole of } \mathrm{CO}_{2}=\frac{1 \times 1000}{2 \times 1000}=0.5 \quad \quad \text { (n.f. of } \mathrm{CO}_{2}=2 \text {) } \\
& \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
\end{array}
$$

$\therefore \quad 0.5 \mathrm{CO}_{2}$ is formed more.
$\therefore \quad \mathrm{NaOH}$ required more $=2$ litre of $1 / 2 \mathrm{M} \mathrm{NaOH}=56 \mathrm{~g} \mathrm{KOH}=1$ mole KOH.
22. (ABC$)^{\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}} \underset{\mathrm{a}}{\mathrm{a}^{2}}$
$\therefore \quad a+b=2$
Also, Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}+$ Meq. of $\mathrm{SO}_{3}=$ Meq. of NaOH

$$
\begin{align*}
& \frac{a}{49} \times 1000+\frac{b}{40} \times 1000=0.1 \times 432.5 \\
\therefore & 4 a+49 b=84.77 \tag{ii}
\end{align*}
$$

$\therefore \quad \mathrm{a}=1.47 \mathrm{~b}=0.53 \therefore$ Equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{1.47}{49}=0.03$
$\therefore \quad \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \quad$ Eq. of $\mathrm{SO}_{3}=\frac{0.53}{40}=0.01325$
Weight of $\mathrm{H}_{2} \mathrm{O}$ to react with $\mathrm{SO}_{3}=\frac{0.53 \times 18}{80}=0.11925$
$\therefore \quad 108.11 \%$ oleum $=100 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}+8.11 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=100 \mathrm{gH}_{2} \mathrm{SO}_{4}+\frac{8.11 \times 80}{18}$
$=100 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}+36 \mathrm{~g} \mathrm{SO}_{3}=1.36 \mathrm{~g}$ oleum
136 g oleum has $36 \mathrm{~g} \mathrm{SO}_{3}$

$$
\begin{aligned}
& \therefore \quad 2 \text { g oleum has } \frac{36 \times 2}{136}=0.53 \mathrm{~g} \mathrm{SO}_{3} \\
& \therefore \quad \% \text { of free } \mathrm{SO}_{3}=\frac{0.53 \times 100}{2}=26.5
\end{aligned}
$$

23. (BCD) $2 \mathrm{~V}^{2+} \rightarrow\left(\mathrm{V}^{5+}\right)_{2}+6 \mathrm{e}$

$$
\begin{aligned}
& 2 \mathrm{e}+\left(\mathrm{Fe}^{3+}\right)_{2} \rightarrow 2 \mathrm{Fe}^{2+} \times 3 \\
\therefore & 2 \mathrm{VO}+3 \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 6 \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5} \quad \mathrm{E}=\frac{\mathrm{M}}{3} \mathrm{E}=\frac{\mathrm{M}}{2} \mathrm{E}=\frac{\mathrm{M}}{3 / 2} \quad \mathrm{E}=\frac{\mathrm{M}}{6}
\end{aligned}
$$

24. (ABD) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic acid.
25. (AC) $\quad\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]=\frac{2.70 \times 1000}{135 \times 100}=0.2 \mathrm{M}$
$\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$

$$
100 \times 0.2
$$

100×0.2
$=20 \quad 0 \quad 0$
$0 \quad 2020$
$\therefore \quad \mathrm{M}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{20}{1000} ; \quad \mathrm{M}_{\mathrm{HCl}}=\frac{40}{100}$
26. (AC) $3.42 \mathrm{ppm} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \equiv \frac{96 \times 3 \times 3.42}{342} \mathrm{ppm}\left[\mathrm{SO}_{4}^{2-}\right]=2.88 \mathrm{ppm} \mathrm{SO}$
$\equiv \frac{27 \times 2 \times 3.42}{342} \mathrm{ppm} \mathrm{Al}{ }^{3+}=0.54 \mathrm{ppm} \mathrm{Al}^{3+}$
$1.42 \mathrm{ppm} \mathrm{Na}_{2} \mathrm{SO}_{4} \equiv \frac{96 \times 1.42}{142} \mathrm{ppm} \mathrm{SO}_{4}=0.96 \mathrm{ppm} \mathrm{SO}_{4}^{2-}$
$\equiv \frac{46 \times 1.42}{142} \mathrm{ppm} \mathrm{Na}{ }^{+}=0.46 \mathrm{ppm} \mathrm{Na}^{+}$
$\therefore \quad\left[\mathrm{Al}^{3+}\right]=\frac{0.54 \times 10^{3}}{27 \times 10^{6}}=2.0 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{SO}_{4}^{2-}\right]=\frac{(2.88+0.96) \times 10^{3}}{96 \times 10^{6}}=4 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{Na}^{+}\right]=\frac{0.46 \times 10^{3}}{23 \times 10^{6}}=2 \times 10^{-5} \mathrm{M}$
27. (BC) Meq. of $\mathrm{NaHC}_{2} \mathrm{O}_{4}=100 \times 0.1=10$

Meq. of NaOH required $=10=\mathrm{V}_{1} \times 0.1 \times 1($ v.f. $\mathrm{NaOH}=1)$
Meq. of KMnO_{4} required $=10=\mathrm{V}_{2} \times \mathrm{a} \times 5$ (v..f. of $\mathrm{KMnO}_{4}=5$)
$\therefore \quad \mathrm{V}_{2}=\frac{10}{5 \mathrm{a}} \quad \therefore \quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{100 \times 5 \mathrm{a}}{10}$
If $\mathrm{M}_{\mathrm{KMnO}_{4}}=0.1 \mathrm{M}$, then $10=\mathrm{V}_{2} \times 0.1 \times 5 \therefore \mathrm{~V}_{2}=20 \mathrm{~mL}$
28. (ABC) Meq. of $\mathrm{KMnO}_{4}=100 \times 0.1 \times 5=50=$ Meq. of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+$ Meq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\therefore \quad a+b=50$
Meq. of $\mathrm{NaOH}=50 \times 0.2=10=$ Meq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\therefore \quad \mathrm{b}=10$
$\therefore \quad a=40$
m moles of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{\mathrm{a}}{2} \quad \therefore \quad \mathrm{~m}$ moles of $\mathrm{C}_{2} \mathrm{O}_{4}=\frac{\mathrm{a}}{2}+\frac{\mathrm{b}}{2}=\frac{\mathrm{a}+\mathrm{b}}{2}=\frac{40+10}{2}=25$
m moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{\mathrm{b}}{2}$
29. (A) HNO_{3} also oxides Fe^{2+} whereas KMnO_{4} oxidises HCl .
30. (ABC) $2 \mathrm{Fe}^{2+} \rightarrow\left(\mathrm{Fe}^{3+}\right)+2 \mathrm{e} \quad$ Eq. wt. of $\mathrm{FeS}_{2}=\frac{\mathrm{M}}{22 / 2}=\frac{\mathrm{M}}{11}$

$$
\begin{array}{ll}
& 2\left(\mathrm{~S}^{-1}\right)_{2} \rightarrow 4\left(\mathrm{~S}^{4+}\right)+20 \mathrm{e} \quad \text { Eq. wt. of } \mathrm{SO}_{2}=\frac{\mathrm{M}}{20 / 4}=\frac{\mathrm{M}}{5} \\
\therefore & 4 \mathrm{e}+\mathrm{O}_{2}^{0} \rightarrow 2\left(\mathrm{O}^{-2}\right) \\
\therefore \quad & 4 \mathrm{FeS}_{2}+7 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \\
& \text { S has }-1 \text { oxidation state. }
\end{array}
$$

Level-III

31. $\left(\mathrm{BCD}\right.$ Molar mass of gas $=\frac{0.220}{112} \times 22400=44$
32. (ABC)
33. (BCD) $2 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+6 \mathrm{NaNO}_{3(\mathrm{aq})}$
$\mathrm{Na}_{3} \mathrm{PO}_{4}$ is the limiting reactant and is completely consumed.
Mol. of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ formed $=\frac{0.2}{2}=0.1 \mathrm{~mol}$ of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=\frac{3}{2} \times 0.2=0.3$
Mol of unreacted $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=0.5-0.3=0.2=\mathrm{mol}^{2}$ of Ba^{2+} ion
Mol of Na^{+}in solution $=0.2 \times 3=0.6 ; \mathrm{Mol}$ of NO_{3}^{-}in solution $=0.5 \times 2=1$
34. (BCD) $\mathrm{NaNO}_{2}+\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{2}+\mathrm{NaCl} ; \mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
NaNO_{2} is limited reactant.
Mol of N_{2} formed $=\mathrm{mol}$ of $\mathrm{NH}_{4} \mathrm{NO}_{2}$ formed $=0.5$
Volume of $\mathrm{N}_{2}(\mathrm{STP})=0.5 \times 22.4=11.2 \mathrm{~L}$; mass of $\mathrm{N}_{2}=0.5 \times 28=14 \mathrm{~g}$
35. (ABD) $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$ The residual gas is CO .

Volume of CO oxidized $=2 \times 30=60 \mathrm{ml}$; volume of $\mathrm{CO}=60+10=70 \mathrm{ml}$
Volume of CO_{2} initially present in the mixture $=100-70=30 \mathrm{ml}$
Volume of CO_{2} formed $=60 \mathrm{ml}$; Volume of CO_{2} absorbed by $\mathrm{KOH}=30+60=90 \mathrm{ml}$

Passage-I

1. In aq. solution iodine exist in polyiodide ion $\left(l_{3}^{-}\right)$
2. $\quad 2{ }^{+2} \mathrm{CuSO}_{4} \rightarrow+\stackrel{+1}{\mathrm{C}} \mathrm{u}_{2} \mathrm{I}_{2}$, n-factor $=1$
3. Eq. of $\mathrm{CuSO}_{4}=\mathrm{Eq}$. of $\mathrm{I}_{2}=\mathrm{Eq}$. of hypo
$\frac{\mathrm{Wt}}{\text { Eq. Wt CuSO}} 44$
Wt. of $\mathrm{CuSO}_{4}=\frac{100}{1000} \times 159.5=15.95 \mathrm{gm}$
$\%$ purity $=10 \%$
4. Eq. of $\mathrm{Hypo}=\mathrm{Eq}$. of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$100 \times 0.1=\frac{x}{249.5} \times 1000, x=2.5 \mathrm{gm}$
5. Eq. of $\mathrm{NaOH}=$ Eq. of KHP
$23.48 \times N=\frac{0.5468}{204} \times 1000$
Normality $=0.114 \mathrm{~N} ;$ molarity $=0.114 \mathrm{M}$
6. Eq. of $\mathrm{KMnO}_{4}=$ Eq. of FeSO_{4}
$16.42 \times 0.1327 \times 5=\frac{W}{152} \times 1000$
$W=1.66 \mathrm{gm} ;$ no. of moles $=\frac{1.66}{152}=1.09 \times 10^{-2}$
7. $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+2}$
8. $\because 100 \mathrm{gm}$ solution has $98 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{V}=\frac{\mathrm{m}}{\rho}=\frac{100}{1.84}=54.34 \mathrm{~mL} ; M=\frac{98 \times 1000}{98 \times 54.34}=18.4$
$M_{1} V_{1}=M_{2} V_{2} \Rightarrow 18.4 \times V_{1}=5000 \times 0.5$
$\mathrm{V}_{1}=135.85 \mathrm{~mL}$
9. m eq. of CuSO_{4} reacted $=\mathrm{m}$ eq. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ reacted $(\mathrm{n}-\mathrm{f}=8)=50^{\prime} 1^{\prime} 8=400$
$\frac{\mathrm{Wt}}{\mathrm{Eq.Wt}} \times 1000=400 \Rightarrow \frac{\mathrm{Wt}}{149.5} \times 1000=400$
Wt. $=59.8 \mathrm{gm} ; \%$ purity $\Rightarrow \frac{59.8}{79.75} \times 100=75 \%$
10. $214 \mathrm{~g} \mathrm{KIO}_{3}=1$ mole of KIO_{3}
$=3$ mole of I_{2} (in the balanced chemical reaction) $=6$ eq. of $\mathrm{I}_{2}(\mathrm{nf}=2)=6000 \mathrm{~m}$ eq. of I_{2} Let the vol. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=x \mathrm{~mL}$, then
$\left(x{ }^{\prime} 1\right)^{\prime} 8=6000 \quad x=750 \mathrm{~mL}$
11. m mole of KMnO_{4} used $=50 \cdot \frac{1}{10}=5$
m eq. of KMnO_{4} used $(\mathrm{nf}=5)=25 \mathrm{~m} \mathrm{eq}$. of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-2}$
m mole of $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}(\mathrm{n}=2)=\frac{25}{2}=12.5$
m eq. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=2.5=\mathrm{m}$ eq. of $\mathrm{Cu}^{2+}(\mathrm{n}=1) \quad \mathrm{m}$ eq. of $\mathrm{Cu}^{2+}(\mathrm{n}=1)=2.5$
Difference in number of m moles of Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=12.5-2.5=10$

STOICHIOMETRY

12. $5 \mathrm{KI}+\mathrm{KIO}_{3}+6 \mathrm{HCI} \rightarrow 3 \mathrm{I}_{2}+6 \mathrm{KCI}+3 \mathrm{H}_{2} \mathrm{O}$
$\frac{1.66}{166}=10^{-2} \mathrm{~mol}$
moles of KIO_{3} reacted $=\frac{1}{5} \times 10^{-2}=2 \times 10^{-3}$
moles of I_{2} formed $=3 \times 2 \times 10^{-3}=6 \times 10^{-3}$

Match the Column

1. $(a-r, t),(b-p, t),(c-q),(d-s)$
$\stackrel{-3}{\mathrm{~N}} \mathrm{H}_{3} \rightarrow \stackrel{+5}{\mathrm{~N}} \mathrm{O}_{3}^{-} \quad \mathrm{n}$-factor $=8$, Eq.Wt $=\mathrm{Mw} / 8$
$\stackrel{+2}{\mathrm{~F}} \mathrm{eC}_{2} \mathrm{O}_{4} \rightarrow \stackrel{+3}{\mathrm{~F}} \mathrm{e}^{+++}+2 \stackrel{+4}{\mathrm{C}} \mathrm{O}_{3}^{--} \quad \mathrm{n}$-factor $=3$, Eq.Wt $=\mathrm{Mw} / 3$

$\mathrm{KMnO}_{4} \rightarrow \stackrel{+2}{\mathrm{M}} \mathrm{n}^{++} \quad$ n-factor $=5$, Eq. Wt $=\mathrm{Mw} / 5$
2. $(a-r),(b-t),(c-p),(d-s)$
$\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic acid $(\mathrm{n}=3)$; $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic acid $(\mathrm{n}=2) ; \mathrm{H}_{3} \mathrm{BO}_{3}$ is monobasic acid
($n=1$) and EDTA is tetrabasic acid ($n=4$)
3. $(a-q, t),(b-p),(c-r, t),(d-s, t)$
$\mathrm{K}_{\mathrm{M}}^{+7} \mathrm{nO}_{4} \rightarrow \stackrel{+2}{\mathrm{M}} \mathrm{n}^{+2}(\mathrm{n}$-factor $=5)$
$\mathrm{Mg}^{+3}{ }_{2} \mathrm{O}_{4} \rightarrow \mathrm{Mg}^{+2}+2{\stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}(\text { n-factor }=2)}^{2}$
$\mathrm{K}_{2} \stackrel{+6}{\mathrm{C}}_{2} \mathrm{O}_{7} \rightarrow 2 \stackrel{+3}{\mathrm{C}} \mathrm{r}^{+3}($ n-factor $=6)$
$\stackrel{+6}{\mathrm{Cr}} \mathrm{O}_{5} \rightarrow \stackrel{+3}{\mathrm{Cr}_{2}} \mathrm{O}_{3}($ n-factor $=3)$

ASSERTION/ REASON

1. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}$ \qquad $\mathrm{NaHCO}_{3}+\mathrm{NaCl}$
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

From the above reactions it is clear that two moles of HCl are required for complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The titre value with methyl orange correspond to complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and with phenolphthalein correspond to half neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
2. Molality does not depend upon volume thus it does not depend upon temperature.
3. $\stackrel{2+}{\mathrm{Fe}} \mathrm{CB}_{2} \xrightarrow{\mathrm{O}_{2}} \stackrel{3+}{\mathrm{Fe}_{2}} \mathrm{O}_{3}+\stackrel{4+}{\mathrm{S}} \mathrm{O}_{2}$
4. Density change means $m=d$ ' v mass of solution per unit volume changed hence mass of solute per unit volume changed and therefore molarity and morality will be changed.
5. n factor of P will be $\frac{2 y}{x}$ and atomic mass $=$ equivalent mass of $P \times n$-factor of

$$
P=E_{p} \times \frac{2 y}{x}
$$

6. Industrial $\mathrm{H}_{2} \mathrm{SO}_{4}$ is Oleum $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$ in which concentration is represented by this method.

9 gm water is added
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
$0.5 \mathrm{ml} \quad 0.5 \mathrm{ml}$
SO_{3} also present as 0.5 mol or 40 gm
6. Eq. Wt = M. W / valence factor
7. Urea is $\mathrm{H}_{2} \mathrm{NCONH}_{2}$
$\%$ of $\mathrm{N}=\frac{28}{60} 100=46.6 \%$
Urea is a covalent compound
8. $M=\frac{10 D x}{M_{s}}$
where $\mathrm{D}=$ density of solution
$x=\%$ by mass $\quad M_{s}=$ molar mass of solute.
9.

10. meq. $=\mathrm{N} \times \mathrm{V}(\mathrm{ml})=\frac{\mathrm{wt} .}{\text { Eq. } \mathrm{wt}} \times 1000$. No doubt N decrease with dilution but V increases and thus meq. remain constant

INTEGERANSWER TYPE QUESTIONS

1. $0.01 \times n-f=0.06 \times 3$
$n-f=18$
$18=\left(\frac{2}{\mathrm{n}}+4\right) \times \mathrm{n} \quad \mathrm{n}=4$
2. MnO_{4}^{-}- would convert to Mn^{2+}. Therefore its ' n ' factor would be 5 .
\therefore Equivalents of $\mathrm{MnO}_{4}^{-}=1.61 \times 10^{-3} \times 5=8.05 \times 10^{-3}$
Equivalents of $\mathrm{A}^{\mathrm{n+}}=8.05 \times 10^{-3}$
' n ' factor of $A^{n+}=5-n$
$\therefore(5-n) \times 2.68 \times 10^{-3}=8.05 \times 10^{-3}$ $\mathrm{n}=2$
3. $\because 100 \mathrm{~g} \mathrm{Haemoglobin} \mathrm{has}=0.25 \mathrm{~g} \mathrm{Fe}$
$\therefore 86600 \mathrm{~g}$ Haemoglobin has $=\frac{0.25 \times 86600}{100} \mathrm{gFe}=224 \mathrm{~g} \mathrm{Fe}$
i.e., 1 mole or N molecules of Haemoglobin has $=\frac{224}{56} \mathrm{~g}$ atom $\mathrm{Fe}=4 \mathrm{~g}$ atom Fe
$\therefore 1$ molecule of Haemoglobin has 4 atom of Fe.
4. Let valencies of Cu in two oxides be x and y , then I oxide is $\mathrm{Cu}_{2} \mathrm{O}_{\mathrm{x} ;}$; Il oxide is $\mathrm{Cu}_{2} \mathrm{O}_{\mathrm{y}}$

In I oxide : Equivalent of $\mathrm{Cu}=$ equivalent of oxygen $\quad \frac{\mathrm{w}}{\mathrm{A} / \mathrm{x}}=\frac{\mathrm{a}}{8}$
where $\mathrm{w}, \mathrm{x}, \mathrm{A}$ and a are weight of Cu , at. wt. of Cu , valency of Cu and weight of oxygen.
In II oxide: $\frac{\mathrm{w}}{\mathrm{A} / \mathrm{y}}=\frac{\mathrm{a}}{2 \times 8} \quad \ldots$.(2) $\quad(\because$ Oxygen used half of I$)$
By eqs. (1) and (2)
$\frac{x}{y}=\frac{2}{1}$

$$
2 / y=2 / 1 \Rightarrow y=1
$$

the valency of Cu second oxide is 1
5. Meq. of oxalic acid in $16.68 \mathrm{~mL}=\mathrm{Meq}$ of $\mathrm{NaOH}=25 \times \frac{1}{15}$
$\therefore \quad$ Meq of oxalic acid in $250 \mathrm{~mL}=25 \times \frac{1}{15} \times \frac{250}{16.68}=24.98$
$\therefore \frac{1.575}{(90+18 x) / 2} \times 1000=24.98 \quad \therefore x \approx 2$
6. 6

Let the ox. no. of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ be x .
We know that, ox. No. of $\mathrm{K}=+1$
، ox. No. of $\mathrm{O}=-2$
So, $\quad 2($ ox. no. K) $+2($ ox. no.Cr $)+7($ ox. No. $O)=0$
$\Rightarrow \begin{array}{r}2(+1) \\ \mathrm{x}=+6\end{array}$
7. 1
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
(Acid) (NaOH)
$\mathrm{N}_{1} \times 2=\frac{1}{5} \times 10$
$\mathrm{N}_{1}=\frac{1}{5} \times \frac{10}{2}=1$
8. 3

Number of moles of $\mathrm{KMnO}_{4}=\frac{\mathrm{MV}}{1000}=\frac{0.145 \times 46.9}{1000}=6.8 \times 10^{-3}$
Number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}=6.8 \times 10^{-3} \times 2.5=0.017$
Mass of $\mathrm{H}_{2} \mathrm{O}_{2}=0.017 \times 34=0.578$
Mass $\%$ of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{0.578}{20} \times 100=2.9$

SUBJECTIVE QUESTIONS

1. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$

Number of moles of $\mathrm{Cl}_{2}=\frac{1.78}{22.4}=0.07946$
Number of moles of $\mathrm{MnO}_{2}=0.07946$
\therefore Mass of $\mathrm{MnO}_{2}=0.0794 \times 87$

$$
=6.913 \mathrm{~g}
$$

\therefore Number of moles of $\mathrm{HCl}=4 \times 0.07946=0.3178$
mass of $\mathrm{HCl}=0.3176 \times 36.5$
Let the volume of $\mathrm{HCl}=\mathrm{V} \mathrm{ml}$
$\therefore \quad V \times 1.2 \times \frac{4}{100} 4 \times 0.317 \times 36.5=241.66 \mathrm{ml}$
2. m . Eq of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $10 \mathrm{~mL}=\mathrm{me}$ of $\mathrm{KMnO}_{4}=0.0245 \times 5 \times 25=3.0625$

In $100 \mathrm{~mL} \quad=30.625 \mathrm{~m} . \mathrm{Eq}$
$\because 100 \mathrm{~mL}$ solution contains $30.625 \times 10^{-3} \mathrm{eq}$
$\therefore 1000 \mathrm{~mL}$
$=30.625 \times 10^{-3} \times \frac{1000}{100}=30.625 \times 10^{-2}=0.30625 \mathrm{~N}$
3. Out of $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{NaHCO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ only NaHCO_{3} decomposes on heating to give CO_{2} gas, according to the equation $2 \mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
moles of $\mathrm{CO}_{2}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{750 \times 123.9}{760 \times 1000 \times 0.082 \times 298}=5 \times 10^{-3}$
\therefore moles of $\mathrm{NaHCO}^{3}=2 \times 5 \times 10^{-3}=0.01$

STOICHIOMETRY

Equivalents of HCl used $=\frac{150 \times(1 / 10)}{1000}=1.5 \times 10^{-2}$
Equivalents of NaHCO_{3} in $1.5 \mathrm{~g}=0.01 \times \frac{1.5}{2}$

$$
=7.5 \times 10^{-3}
$$

\therefore Equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}=1.5 \times 10^{-2}-7.5 \times 10^{-3}=7.5 \times 10^{-3}$
Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{7.5 \times 10^{-3}}{2}$
(when $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with HCl it gives $\mathrm{NaCl}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. No atom undergoes change in oxidation state. \therefore 'n' factor of $\mathrm{Na}_{2} \mathrm{CO}_{3}=2$)
$=3.75 \times 10^{-3}$
Mass of NaHCO_{3} in $1.5 \mathrm{~g}=7.5 \times 10^{-3} \times 84=0.63 \mathrm{~g}$
Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $1.5 \mathrm{~g}=3.75 \times 10^{-3} \times 106=0.3975 \mathrm{~g}$
\therefore mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}=1.5-0.63-0.3975$
$=0.4725 \mathrm{~g}$
Percentage of $\mathrm{NaHCO}_{3}=\frac{0.63}{1.5} \times 100=42 \%$
Percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.3975}{1.5} \times 100=26.5 \%$
Percentage of $\mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{0.4725}{1.5} \times 100=31.5 \%$
4. Total moles of the mixture $=\frac{1}{22.4}=0.0446=4.46 \times 10^{-2}$

Equivalents of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $=\frac{40}{1000} \times \frac{1}{10}=4 \times 10^{-3}$
Equivalents of $\mathrm{I}_{2}=4 \times 10^{-3}$
equivalents of $\mathrm{KI}=4 \times 10^{-3}$
equivalents of $\mathrm{O}_{3}=4 \times 10^{-3}$
when O_{3} reacts with KI it converts to O_{2} and O^{-2}
\therefore the ' n ' factor for O_{3} in this reaction is 2
moles of $\mathrm{O}_{3}=\frac{4 \times 10^{-3}}{2}=2 \times 10^{-3}$
moles of $\mathrm{O}_{2}=4.46 \times 10^{-2}-2 \times 10^{-3}=4.26 \times 10^{-2}$
\therefore mass percent of ozone in the mixture $=\frac{2 \times 10^{-3} \times 48}{2 \times 10^{-3} \times 48+4.26 \times 10^{-2} \times 32} \times 100=6.57 \%$
number of O_{3} molecules $=2 \times 10^{-3} \times 6.023 \times 10^{23}=1.2 \times 10^{21}$
\therefore number of photons required $=1.2 \times 10^{21}$
5. Potassium selenate is isomorphous to $\mathrm{K}_{2} \mathrm{SO}_{4}$ and thus its molecular formula is $\mathrm{K}_{2} \mathrm{SeO}_{4}$.

Now molecular weight of $\mathrm{K}_{2} \mathrm{SeO}_{4}=(39 \times 2+\mathrm{a}+4 \times 16)$

$$
=(142+a)
$$

where a is atomic weight of Se
$(142+a) \mathrm{g}_{2} \mathrm{SeO}_{4}$ has $\mathrm{Se}=\mathrm{ag}$
$\therefore \quad 100 \mathrm{~g} \mathrm{~K}_{2} \mathrm{SeO}_{4}$ has $\mathrm{Se}=\frac{\mathrm{a} \times 100}{142+\mathrm{a}}$
$\because \quad \%$ of $\mathrm{Se}=45.52$
$\therefore \quad=45.52$
$\therefore \quad a=118.2$
Also equivalent of $\mathrm{K}_{2} \mathrm{SeO}_{4}=\frac{\mathrm{Mol} . \mathrm{wt} .}{2}=\frac{2 \times 39+118.2+64}{2}=\mathbf{1 3 0 . 1}$
6. $\quad\left(\right.$ Molarity $\left.=\frac{\text { Normality }}{\text { No. of replaceable } \mathrm{OH}^{-}}\right)$

$$
N=M \times 2
$$

Thus Meq. of borax in solution $=50^{\prime} 0.2^{\prime} 2=20$
$\therefore \quad \frac{\mathrm{w}}{\mathrm{M} / 2} \times 1000=20$
$\therefore \quad \frac{\mathrm{W}}{382 / 2} \times 1000=20 \backslash \mathrm{w}=3.82 \mathrm{~g}$
For neutralization of HCl
Meq. of $\mathrm{HCl}=$ Meq. of borax
$25 \times 0.1934=\frac{\mathrm{w}}{382 / 2} \times 1000$
$\therefore \quad$ Weight of borax $=0.09235 \mathrm{~g}$
For neutralization of $\mathrm{H}_{2} \mathrm{SO}_{4}$
Meq. of borax $=$ Meq. of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\frac{w}{382 / 2} \times 1000=25 \times 0.1934 \times 2
$$

$\therefore \quad$ Weight of borax $=1.847 \mathrm{~g}$
7. The reactions are
$\mathrm{H}_{2} \mathrm{O}+2 \mathrm{KI}+\mathrm{O}_{3} \longrightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}+\mathrm{O}_{2}$
Also $2 \mathrm{e}^{-}+\mathrm{I}_{2} \longrightarrow 2 \mathrm{I}^{-}$
And $2 \mathrm{~S}_{2}{ }^{2+} \longrightarrow \mathrm{S}_{4}^{+5 / 2}+2 \mathrm{e}^{-}$
$\therefore \quad$ Meq. of $\mathrm{I}_{2}=$ Meq. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=1.5 \times 0.01=1.5 \times 10^{-2}$
or $\quad \mathrm{mM}$ of $\mathrm{I}_{2}==7.5 \times 10^{-3}$
$\therefore \quad \mathrm{mM}$ of $\mathrm{O}_{3}=\mathrm{mM}$ of $\mathrm{I}_{2}=7.5 \times 10^{-3}$
(Mole ratio of $\mathrm{O}_{-3}: \mathrm{I}_{2}:: 1: 1$)
$\mathrm{P}_{\mathrm{O}_{3}}=\frac{7.5 \times 10^{-6} \times 0.0821 \times 300}{10}=184.725 \times 10^{-7} \mathrm{~atm}$
$\therefore \quad$ Volume $\%$ of $\mathrm{O}_{3}=184.725 \times 10^{-7} \times 100=1.847 \times 10^{-3} \%$
8. $n_{\mathrm{CaCO}_{3}}+n_{\mathrm{BaCO}_{3}}=\frac{168}{22400}==7.5 \times 10^{-3}$
$2 \mathrm{BaCO}_{3} \longrightarrow 2 \mathrm{BaCrO}_{4} \longrightarrow \mathrm{BaCr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

STOICHIOMETRY

eq. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=$ eq. of $\mathrm{I}_{2}=$ eq of $\mathrm{BaCr}_{2} \mathrm{O}_{7}=\frac{20 \times 10^{-3} \times 0.05 \times 100}{10}=1 \times 10^{-2}$
Moles of $\mathrm{BaCr}_{2} \mathrm{O}_{7}=\frac{1}{6} \times 10^{-2}$
Moles of $\mathrm{BaCrO}_{4}=\frac{2}{6}\left(1 \times 10^{-2}\right)$
Moles of $\mathrm{BaCO}_{3}=\frac{1}{3} \times 10^{-2}=3.33 \times 10^{-3}$
Weight of $\mathrm{BaCO}_{3}=0.650 \mathrm{gm}$
From equation (1) and (2) we get
$=4.17 \times 10^{-3}$
weight of $\mathrm{CaCO}_{3}=100 \times 4.17 \times 10^{-3}=0.417 \mathrm{~g}$
weight of $\mathrm{CaO}=1.249-0.656-0.417=0.176$
$\%$ of $\mathrm{CaO}=\frac{0.176}{1.249} \times 100=14.09 \%$
9. Meq. of alkali added $=30 \times 0.04=1.2$

Meq. of alkali left $=22.48 \times 0.024=0.54$
$\therefore \quad$ Meq. of alkali for SO_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}=1.2-0.54=0.66$
$\therefore \quad$ Weight of alkali used $=\frac{0.66 \times 40}{1000}=0.0264$
80 g NaOH reacts with $64 \mathrm{~g} \mathrm{SO}_{2}$
$\therefore 0.0264 \mathrm{~g} \mathrm{NaOH}$ reacts $=\frac{64 \times 0.0264}{80}=0.021 \mathrm{~g} \mathrm{SO}_{2}$
Now $64 \mathrm{~g} \mathrm{SO}_{2}$ required $=32 \mathrm{~g} \mathrm{~S}$
$\therefore 0.021 \mathrm{~g} \mathrm{SO}_{2}$ required $=\frac{32 \times 0.021}{64}=0.0105 \mathrm{~g}$
$\therefore \%$ of $S=\frac{0.0105}{5.6} \times 100=0.1875 \%$
10. Let Al, Mg and Cu be a, b and c g respectively.
$2 \mathrm{Al}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
$\mathrm{Mg}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$\mathrm{Cu}+\mathrm{HCl} \longrightarrow$ No reaction
i.e., only Al reacts with NaOH and then only Mg reacts with HCl

$$
\begin{array}{cc}
\therefore & a+b+c=8.72 \\
b+c=2.10 \text { (Residue left after alkali treatment) } \\
& \mathrm{c}=0.69 \text { (Residue left after acid treatment) } \\
\therefore & \mathrm{b}=6.62 \mathrm{~g} \\
\therefore & \text { \% of AI }=\frac{6.62}{8.72} \times 100=75.9
\end{array}
$$

$$
\begin{aligned}
& \% \text { of } \mathrm{Mg}=\frac{1.41}{8.72} \times 100=16.2 \\
& \% \text { of } \mathrm{Cu}=\frac{0.69}{8.72} \times 100=7.9
\end{aligned}
$$

11. $2 \mathrm{KClO}_{3}+12 \mathrm{HCl} \longrightarrow 2 \mathrm{KCl}+6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Cl}_{2}$
$\mathrm{Cl}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{-2}$
Also Meq. of $\mathrm{Cl}_{2}=$ Meq. of $\mathrm{Hypo}=100 \times 1$
$\left[\because \mathrm{N}_{\text {Hypo }} 12.3=24.6 \times 0.5 ; \therefore \mathrm{N}_{\text {Hypo }}=1\right]$
Also mM of $\mathrm{KClO}_{3}=\frac{2 \times \mathrm{mM} \text { of } \mathrm{Cl}_{2}}{6}=\frac{2 \times 50}{6}=\frac{50}{3}$
Also $\frac{\mathrm{w}}{122.5} \times 1000=\frac{50}{3} \quad\left[\right.$ milli-mole $\left.(\mathrm{mM})=\frac{\mathrm{Wt} . \times 1000}{\mathrm{~mol} . \mathrm{wt} .}\right] \quad \mathrm{W}_{\mathrm{KClO}_{3}}=2.042$
$\%$ of $\mathrm{KClO}_{3}=\frac{2.042}{2.48} \times 100=82.32 \%$
12. Let atomic weight of P and Q are a and b respectively
\therefore Molecular weight of $\mathrm{P}_{2} \mathrm{Q}_{3}=2 \mathrm{a}+3 \mathrm{~b}$ and Molecular weight of $\mathrm{PQ}_{2}=\mathrm{a}+2 \mathrm{~b}$
Now given that 0.15 mole of $\mathrm{P}_{2} \mathrm{Q}_{3}$ weigh 15.9 g
$(2 a+3 b)=\frac{15.9}{0.15} \quad\left(\therefore \frac{\mathbf{w t} .}{\text { mol. } \mathrm{wt} .}=\right.$ mole $)$
Similarly, $(a+2 b)=\frac{9.3}{0.15}$
Solving these two equations
$\mathrm{b}=18, \mathrm{a}=26$
13. Redox changes are

Case I: $\quad \mathrm{Fe}^{2+} \xrightarrow{\mathrm{Zn} \text { dust }+\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{Fe}^{2+} \quad$ (i.e. no change)
$2 \mathrm{e}+\mathrm{Fe}_{2}^{3+} \xrightarrow{\mathrm{Zndust}+\mathrm{H}_{2} \mathrm{SO}_{4}} 2 \mathrm{Fe}^{2+}$
Zn dust is used as reducing agent and thus,
Let a meq. of Fe^{2+} and b Meq. of Fe^{3+} be present in 25 mL solution. In case I , after reduction with Zn .
Meq. of $\mathrm{Fe}^{2+}+$ Meq. of Fe^{2+} from $\mathrm{Fe}^{3+}=\mathrm{a}+\mathrm{b}$
Now these are oxidized by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Total meq. of $\mathrm{Fe}^{2+}=\mathrm{Meq}$. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\mathrm{a}+\mathrm{b}=34.25 \times \frac{1}{10}$
$a+b=3.425$
Case II: If reduction is not made, the solution contains Fe^{2+} and Fe^{3+} of which only Fe^{2+} are oxidized by $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
Meq. of $\mathrm{Fe}^{2+}=$ Meq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$a=22.45 \times \frac{1}{10}, a=2.245$
By equation (1) $b=3.425-2.245=1.18$
Meq. of $\mathrm{FeSO}_{4}=\mathrm{a}=2.245 \quad$ (in 25 mL)
Meq. of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\mathrm{b}=1.18 \quad$ (in 25 mL)
Milli equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}=$ milli equivalent of $\mathrm{I}_{2}=$ milli equivalent of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Milli equivalent of $\mathrm{H}_{2} \mathrm{O}_{2}=$ milli equivalent of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
\therefore Meq. of $\mathrm{FeSO}_{4}=\mathrm{a}=2.245$ Meq. of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\mathrm{b}=1.18$
\because Meq. of $\mathrm{FeSO}_{4}=\mathrm{a}=2.245$

$$
\therefore \frac{\mathrm{W}}{\mathrm{M} / 2} \times 1000=1.18
$$

$\therefore \frac{\mathrm{w}}{\mathrm{M} / 1} \times 1000=2.245 \quad \because \mathrm{M}$. wt. of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=400$
\because M. wt. of $\mathrm{FeSO}_{4}=152 \quad \therefore$ Wt. of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)$ in $25 \mathrm{~mL}=0.236 \mathrm{~g}$
\therefore Wt. of FeSO_{4} in $25 \mathrm{~mL}=0.341 \mathrm{~g} \quad \therefore$ Strength of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=9.45 \mathrm{~g} /$ litre
\therefore Strength of $\mathrm{FeSO}_{4}=13.64 \mathrm{~g} /$ litre
14. me of $\mathrm{H}_{2} \mathrm{O}_{2}$ in $50 \mathrm{~mL}=$ me of hypo $=40 \times 0.5=20 \mathrm{me}$

Normality $=\frac{20}{50}=0.4 \mathrm{~N} ; \quad$ Molarity $=\frac{0.4}{2}=0.2 \mathrm{M}$
($\mathrm{n}=2$)
Vol. Strength $=M \times 11.2=0.2 \times 11.2$
15.

So, 0.5 M oxalic acid $=2 \times 0.5$ i.e. 1 N oxalic acid $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=6 \times 0.1$ i.e. $0.6 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
No. of milli equiv. of KMnO_{4} in the sample
$=$ No. of milli equivalents of oxalic acid reacted with it
= (no. of milli equivalents of oxalic acid taken) -
(no. of milli equivalents of oxalic acid remained unreacted)
$=$ (no. of milli equivalents of oxalic acid taken) -
(no. of milli equivalents of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ consumed.
$=62 \times 1-20 \times 0.6=50$
No. of milli equivalents $\mathrm{KMnO}_{4}=$ Weight of KMnO_{4}
$=10 \times 10^{-3} \times 158=1.58 \mathrm{~g}$. Hence i.e. 79%

PREVIOUS YEAR IIT-JEE QUESTIONS

Previous IIT-JEE Questions Solutions

1. (C) $2+2(2+x-4)=0$
or $\quad x=2-1 \Rightarrow x=+1$
2. (B) Tips/Formula
(i) Write balance chemical equation for given change.
(ii) Identify most electronegative element and find its oxidation state.

Method :

$$
\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}
$$

Oxygen being the most electronegative element in the reaction has the oxidation states of -1 (in $\mathrm{H}_{2} \mathrm{O}_{2}$) and -2 (in BaSO_{4}).
3. Write reaction for titration between $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl .

Method :

$$
\underset{\text { (Yellow colour with HPh) }}{\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq)}}}+\mathrm{HCl}_{(\mathrm{aq)}} \rightarrow \underset{\text { (no colour with HPh) }}{\mathrm{NaHCO}_{3}}+\underset{\text { (Half neutralisation) }}{\mathrm{NaCl}_{\text {(aq) }}}
$$

From this reaction it is clear that
(i) 2 moles of HCl are required for complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
(ii) Titre value using phenolphthalein corresponds only to neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to NaHCO , i.e. half of the value required $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
(iii) Titre value using methyl orange corresponds to complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Both S and E are correct but S is not correct explanation of E.
4. Balance the reaction by ion electron method.

Oxidation reaction : $\left.\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}\right] \times 5$
Reduction reaction : $\left.\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{-}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}\right] \times 2$
Net reaction : $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 10 \mathrm{CO}_{2}+8 \mathrm{H}_{2}$
5. MnO_{4}^{-}oxides both Fe^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
$\mathrm{FeC}_{2} \mathrm{O}_{4} f \mathrm{Fe}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
$\mathrm{Fe}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}{ }^{\circledR} \mathrm{Fe}^{3+}+2 \mathrm{CO}_{2}+3 \mathrm{e}^{-} ;$
$\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-}$® Mn^{2+}
$5 \mathrm{FeC}_{2} \mathrm{O}_{4}{ }^{\circ} 3 \mathrm{MnO}_{4}^{-}$or $1 \mathrm{FeC}_{2} \mathrm{O}_{4}{ }^{\circ} \frac{3}{5} \mathrm{MnO}_{4}^{-}$
6. (i) $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic acid
(ii) Normality $=$ Molarity \times Basicity of acid

Normality $=0.3 \times 2=0.6$
7. In an ion sum of oxidation states of all atoms is equal to charge on ion and in a compound sum of oxidation states of all atoms is always zero.

Oxidation state of Mn in $\mathrm{MnO}_{4}^{-}=+7$
Oxidation state of Cr in $\mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}=+3$
Oxidation State of Ni in $\mathrm{NiF}_{6}{ }^{2-}=+4$
Oxidation state of Cr in $\mathrm{CrO}_{2} \mathrm{Cl}_{2}=+6$
9. (i) Oxidation is loss of electron and oxidation number increases during oxidation. Where as reduction is gain of electron and oxidation number decreases during reduction
(ii) In a disproportionation reaction same element undergoes oxidation and reduction during the reaction.
(iii) In decomposition reaction; a molecule breaks down in more than one atoms or molecules.
$2 \mathrm{ClO}^{+1}{ }_{(\mathrm{aq})}{ }^{\circledR}{\stackrel{+5}{+5} \mathrm{ClO}_{3}+2 \mathrm{Cl}^{-1}{ }_{(\text {aq })}}^{(1)}$
It is disproportionation reaction because Cl is both oxidized (+1 to +5) and reduced (+1 to -1) during reaction.
10. Eq. wt. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=$ Eq. wt. of NaOH

Strength of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (in g/L)

$$
=\frac{6.3}{250 / 1000}=25.2 \mathrm{~g} / \mathrm{L}
$$

Normality of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\frac{\text { Strength }}{\text { Eq. wt }}=\frac{25.3}{126 / 2}=0.4 \mathrm{~N}$

$$
\mathrm{V}_{2}=\frac{0.4^{\prime} 10}{01}=40 \mathrm{ml}
$$

11. (i) Find change in oxidation number of Cr atom
(ii) Eq. wt. $=\frac{\text { Molecular wt. }}{\text { change in O.N. }}$

In iodometry, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ liberates I_{2} from iodides (NaI or KI) which is titrated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{I}^{-}+\mathrm{H}^{+} \circledR \mathrm{Cr}^{3+}+\mathrm{I}_{2}
$$

Here, one mole of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ accepts 6 mole of electrons.
I Equivalent weight $=\frac{\text { Molecular weight }}{6}$.
12. (i) Mass of one electron $=9.108 \times 10^{-31} \mathrm{~kg}$
(ii) 1 mole of electron $=6.023 \times 10^{23}$ electrons

Weight of 1 mole ofelectron
$=$ Mass of electron \times Avogadro Number

$$
=9.108 \times 10^{-31} \times 6.023 \times 10^{23}
$$

) No. of moles of electrons in 1 kg

$$
=\frac{1}{9.108^{\prime} 10^{-31} \cdot 6.023^{\prime} 10^{23}}=\frac{1}{9.108^{\prime} 6.023}{ }^{\prime} 10^{8}
$$

13. Molecular weight in gms $=6.023 \times 10^{23}$ atoms
(i) Number of atoms in 24 g of C

$$
=\frac{24}{12} \cdot 6.023^{\prime} 10^{23}=2^{\prime} 6.023^{\prime} 10^{23} \text { atoms }
$$

(ii) Number of atoms in 56 g of Fe

$$
=\frac{56}{56} \cdot 6.023^{\prime} 10^{23}=6.023^{\prime} 10^{23} \text { atoms }
$$

(iii) Number of atoms in 27 g of Al

$$
=\frac{27}{27}^{\prime} 6.023^{\prime} 10^{23}=6.023^{\prime} 10^{23} \text { atoms }
$$

(iv) Number of atoms in 108 g of Ag

$$
=\frac{108}{108}, 6.023^{\prime} 10^{23}=6.023^{\prime} 10^{23} \text { atoms }
$$

\} 2 4 \mathrm { g } of \mathrm { C } has maximum number of atoms.
14. Write the reaction for chemical change during reaction and equate moles.

Given mixture $\mathrm{x}=0.02 \mathrm{~mol}$ of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$
Volume $=2 \mathrm{~L}$
Q Mixture x has 0.02 mol. of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.2 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ in 2 L
\ Conc. of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}=0.01 \mathrm{~mol} / \mathrm{L}$ for each of them
(i) 1 L mixture of $\mathrm{X}+$ excess $\mathrm{AgNO}_{3}{ }^{\circledR}{ }^{(1)} \mathrm{Y}$

STOICHIOMETRY

1	$\underset{0.1 \text { mol/ soluble }}{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}+\mathrm{AgNO}_{3}}$ No. of moles of $\mathrm{Y}=0.01$	(8)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4} \mathrm{NO}_{3}+\underset{(\mathrm{Y})}{\mathrm{AgBr}}\right.$
(ii)	$\begin{aligned} & 1 \mathrm{~L} \text { mixture of } \mathrm{Y}+\text { excess } \mathrm{BaCl}_{2} ® \mathrm{Z} \\ & {\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}+\mathrm{BaCl}_{2}} \\ & 0.1 \text { mol/L soluble } \text { excess } 0.01 \text { mol } \\ & \text { moles of } \mathrm{z}=0.01 \text {. } \end{aligned}$	${ }^{\text {® }}$	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{Cl}_{2}+\mathrm{BaSO}_{4}$ (Z) $0.01 \mathrm{~mol} / \mathrm{L}$

15. The sum of oxidation states of all atoms in compound is equal to zero and sum of oxidation states of all atoms in an ion is equal to charge on the ion.
(i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, O.N. of $\mathrm{Fe}=+3$,

$$
\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{O} . \mathrm{N} . \text { of } \mathrm{Co}=+3
$$

(ii) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{O} . \mathrm{N}$. of $\mathrm{Cr}=+6$,
$\left[\mathrm{MnO}_{4}\right]^{-} \mathrm{O} . \mathrm{N}$. of $\mathrm{Mn}=+7$
(iii) $\mathrm{TiO}_{3}, \mathrm{O} . \mathrm{N}$. of $\mathrm{Ti}=6, \mathrm{MnO}_{2} \mathrm{O} . \mathrm{N}$. of $\mathrm{Mn}=+4$
MnO_{3}, O.N. of $\mathrm{Mn}=+6$
16. $6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}$® $6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ Mohr's salt $\left(\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ and dichromate reacts in 6:1 molar ratio.

Subjective Questions

1. Let the amount of NaNO_{3} in the mixture $=x g$

1 The amount of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in the mixutre $=(5-x) g$
Heating effect of sodium nitrate and hlead nitrate

$$
\begin{aligned}
& \underset{2(23+14+48)=170 \mathrm{~g}}{2 \mathrm{NaNO}_{3}} \quad 3 /{ }^{3 /(8)} 2 \mathrm{NaNO}_{2}+\underset{2}{2_{16=32}} \mathrm{O}_{2}
\end{aligned}
$$

Thus, 170 g of NaNO_{3} gives $=32 \mathrm{~g}$ of O_{2}

$$
\text { \} \quad \mathrm { xg } \text { of } \mathrm { NaNO } _ { 3 } \text { gives } = \frac { 3 2 } { 1 7 0 } \times \mathrm { xg } \text { of } \mathrm { O } _ { 2 }}
$$

Similarly, 662 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ gives $=216 \mathrm{~g}$ of gases

$$
(5-\mathrm{x}) \mathrm{g} \text { of } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \text { gives }=\frac{216}{662} \times(5-\mathrm{x}) \mathrm{g} \text { of gases }
$$

Actual, loss, on heating, is 28% of 5 g of mixture
$=\frac{5^{\prime} 28}{100}=1.4 \mathrm{~g}$
$\frac{32 \mathrm{x}}{170}+\frac{216}{662}=(5-\mathrm{x})=1.4$
$32 x+662+216(5-x) \times 170=1.4 \times 170 \times 662$
$21184 \mathrm{x}+183600-36720 \mathrm{x}=157556-15536 \mathrm{x}=26044$
$\mathrm{x}=1.676 \mathrm{~g}$
wt. of $\mathrm{NaNO}_{3}=1.676 \mathrm{~g}$
and wt. of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=5-1.676=3.324 \mathrm{~g}$
2. Molarity $=\frac{\text { Mass of solute/M.wt. solute }}{\text { Mass of solvent in } \mathrm{kg}}$

Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 ml of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=93 \mathrm{~g}$
I Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1000 ml of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=93-\mathrm{g}$
Mass of $1000 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=1000 \times 1.84=1840 \mathrm{~g}=910 \mathrm{~g}=0.910 \mathrm{~kg}$
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\text { Wt. of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { Mol. wt. of } \mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{930}{98}$
\Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1 kg of water

$$
=\frac{930}{98}, \frac{1}{0.910}=10.43 \mathrm{~mol} .
$$

\ Molality of 1 litre solution $=10.43$
3. In the given problem, a solution containing Cu^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is titrated first with KMnO_{4} and then with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in presence of KI . In titration with KMnO_{4}, it is the $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ ions that react with the MnO_{4}^{-}ions. The concerned balanced equation may be written as below.

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \circledR 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Thus according to the above reaction

$$
2 \mathrm{~mol} \mathrm{MnO}_{4}^{-}{ }^{\circ} 5 \mathrm{~mol}^{2} \mathrm{C}_{2} \mathrm{O}_{4}^{2-}
$$

However,
No. of $\mathrm{mmol}^{-} \mathrm{MnO}_{4}^{-}$and used in titration $=\mathrm{Vol}$. in $\mathrm{ml} \times \mathrm{M}=22.6 \times 0.02=0.452 \mathrm{mmol} \mathrm{MnO}_{4}^{-}$
\ Molar ratio of Cu^{2+} to $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}=\frac{0.565 \mathrm{mmol}}{1.130 \mathrm{mmol}}=1: 2$
4. \quad Mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the sample $=\frac{55.2}{100}, 1=0.552 \mathrm{~g}$

Number of moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}=\frac{55.2}{159.8}=3.454^{\prime} 10^{-3}$
Number of moles of Fe^{3+} ions $=2 \times 3.454 \times 10^{-3}=6.9 \times 10^{-3} \mathrm{~mol}=6.90 \mathrm{mmol}$
Since there is only 1 electron is exchanged in the conversion of Fe^{3+} to Fe^{2+}, the molecular mass is the same as equivalent mass.
I Amount of Fe^{2+} ion in 100 ml . of sol. $=6.90 \mathrm{meq}$.
Volume of oxidant used for 100 ml of Fe^{2+} sol. $=17 \times 4=68 \mathrm{ml}$.
Amount of oxidant used $=68 \times 0.0167 \mathrm{mmol}=1.1356 \mathrm{mmol}$
Let the number of electrons taken by the oxidant $=n$
। No. of meq. of oxidant used $=1.1356 \times \mathrm{n}$
Thus $1.1356 \times \mathrm{n}=6.90$

$$
\mathrm{n}=\frac{6.90}{1.1356}=6
$$

5. 1.5 g of sample require $=150 \mathrm{ml}$. of $\frac{\mathrm{M}}{10} \mathrm{HCl}$

$$
\begin{aligned}
& 2 \mathrm{~g} \text { of sample require }=\frac{150^{\prime} 2}{1.5} \mathrm{ml} . \text { of } \frac{\mathrm{M}}{10} \mathrm{HCl} \\
& \quad=200 \mathrm{ml} . \text { of } \frac{\mathrm{M}}{10} \mathrm{HCl}
\end{aligned}
$$

On heating, the sample, only NaHCO_{3} undergoes decomposition as below :

2 NaH	$\mathrm{Na}_{2} \mathrm{C}$
2 moles	1 mole
2 equ.	1 mole

Neutralization of the sample with HCl takes place as below.

$$
\begin{array}{lll}
\mathrm{NaHCO}_{3}+ & \mathrm{HCl} ® & \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
1 \text { eq. } & 1 \text { eq. } \\
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} ® & 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
1 \text { mole } & 2 \text { mole } \\
2 \text { eq. } & 2 \text { eq. }
\end{array}
$$

Hence, 2 g sample ${ }^{\circ} 200 \mathrm{ml}$. of $\mathrm{M} / 10 \mathrm{HCl}$

$$
=200 \mathrm{ml} . \text { of } \mathrm{N} / 10 \mathrm{HCl}=20 \mathrm{meq} .=0.020 \mathrm{eq} .
$$

Number of moles of CO_{2} formed, i.e.

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{750}{760}, \frac{123.9}{1000} \cdot \frac{1}{0.082^{\prime} 298}=0.005
$$

Moles of NaHCO_{3} in the sample $(2 \mathrm{~g})=2 \times 0.005=0.01$
Equivalent of $\mathrm{NaHCO}_{3}=0.01$
Wt. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.01 \times 53=0.53 \mathrm{~g}$
\ $\%$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.53^{\prime} 100}{2}=26.5 \%$
\ $\%$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the mixture $=100-(42+26.5)=31.5 \%$
6. Reaction involved titration is

$$
\mathrm{KIO}_{3}+2 \mathrm{KI}+6 \mathrm{HCl} \circledR 3 \mathrm{ICl}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

1 mole 2 mole
20 ml . of stock KI solution $=30 \mathrm{ml}$. of $\frac{\mathrm{M}}{10} \mathrm{KIO}_{3}$ solution
Molarity of KI solution $=\frac{30^{\prime} 1^{\prime} 2}{20^{\prime} 10}=\frac{3}{10}$
Millimoles in 50 ml . of KI solution $=50^{\prime} \frac{3}{10}=15$
Millimoles of KI left unreacted with AgNO_{3} solution $=2^{\prime} 50^{\prime} \frac{1}{10}=10$
I Millimoles of KI reacted with AgNO_{3}
Millimoles of AgNO_{3} present AgNO_{3} solution $=5$
Molecular weight of AgNO_{3}
\Wt. of AgNO_{3} in the solution $=5 \times 10^{-3} \times 170=0.850 \mathrm{~g}$
$\% \mathrm{AgNO}_{3}$ in the sample $=\frac{0.850}{1}, 100=85 \%$
7. Calculation of number of moles in 45 ml of $0.025 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

Moles of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.25^{\prime} \frac{45}{1000}=0.01125$
\backslash Initial moles of $\mathrm{Pb}^{2+}=0.01125$
Moles of $\mathrm{NO}_{3}^{-}=0.01125^{\prime} 2=0.02250$

STOICHIOMETRY

Calculation of number of moles in 25 ml . of 0.1 M chromic sulphate
Moles of chromic sulphate $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}=0.1^{\prime} \frac{25}{1000}=0.0025$ moles
Moles of $\mathrm{SO}_{4}^{2-}=0.0025 \times 3=0.0075$
Moles of PbSO_{4} formed $=0.0075$
Moles of Pb^{2+} left $=0.01125-0.0075=0.00375$
Moles of NO_{3}^{-}left $=0.02250$
Moles of chromium ions $=0.0025 \times 2=0.005$
Total volume of the solution $=45+25=70 \mathrm{ml}$.
1 Molar concentration of the species left.
(i) $\quad \mathrm{Pb}^{2+}=\frac{0.00375}{70}, 1000=0.05357 \mathrm{M}$
(ii) $\mathrm{NO}_{3}^{-}=\frac{0.225}{70}, 1000=0.3214 \mathrm{M}$
(iii) $\mathrm{Cr}^{3+}=\frac{0.005}{70}, 1000=0.0714 \mathrm{M}$
8. In pure iron oxide (FeO), iron and oxygen are present in the ratio $1: 1$.

However, here number of Fe^{2+} present $=0.93$
or No. of Fe^{2+} ions missing $=0.07$
Since each Fe^{2+} ion has 2 positive charge, the total number of charge due to missing (0.07) Fe^{2+} ions $=0.07 \times 2=0.14$.
To maintain electrical neutrality, 0.14 positive charge is replacement of one Fe^{2+} ion by one Fe^{3+} ions. Now since, replacement of one Fe^{2+} ion by one Fe^{3+} ion increases one positive charge, 0.14 positive charge must be compensated in short, $0.93 \mathrm{Fe}^{2+}$ ions have $0.14 \mathrm{Fe}^{3+}$ ions.
$100 \mathrm{Fe}^{2+}$ ions have $=\frac{0.14}{0.93}, 100=15.05 \%$

