Stoichiometry: Answer

Answer Key	2
Conceptual Questions	4
Single Correct Choice Questions	4
Level-I	
Level-II	
 evel_	13
More Than One Answer Questions	
	15
Passago	21
Газзаус	
Match The Column	23
Assartian/Passan Questions	23
Integer Answer Type Questions	25
integer Answer Type Questions	
Subjective Questions	26
Draviaua Vaar IIT IEE Quaatiana	20
FIEVIOUS TEAT ITT-JEE QUESTIONS	

	ANSWER KEY								
Conceptual	Questi	ons							
1. (B)	2	2. (A)	3	3. (D)	4	. (A)	Ę	5. (C)	6. (A)
7. (B)	8	3. (D)	ę	9. (A)	10). (C)			
SINGLE CO	DRREC	г сно	ICE						
					Leve	el I			
1.	(B)	2.	(D)	3.	(C)	4.	(A)	5.	(A)
6.	(B)	7.	(D)	8.	(B)	9.	(A)	10.	(B)
11.	(B)	12.	(B)	13.	(B)	14.	(B)	15.	(B)
16.	(B)	17.	(C)	18.	(D)	19.	(D)	20.	(A)
21.	(C)	22.	(A)	23.	(B)	24.	(C)	25.	(A)
					Leve	l II			
26.	(B)	27.	(B)	28.	(C)	29.	(B)	30.	(D)
31.	(A)	32.	(B)	33.	(B)	34.	(C)	35.	(C)
36.	(C)	37.	(C)	38.	(A)	39.	(B)	40.	(C)
41.	(C)	42.	(D)	43.	(D)	44.	(D)	45.	(A)
46.	(A)	47.	(A)	48.	(A)	49.	(D)	50.	(C)
					Le	evel III			
51.	(D)	52.	(D)	53.	(D)	54.	(D)	55.	(D)
56.	(D)	57.	(B)	58.	(B)	59.	(A)	60.	(B)

MORE THAN ONE CORRECT CHOICE

Level I									
1.	(A,B)	2.(A,C)	3.(A,B,	C,D)		4.	(B,C,D)
5.	(A,C,B,D)	6.(A,B	,D)	7.(A,B,	,D)		8.	(B,D)	
9.	(B,C)	10.(BC	2)	11.(AB	C)		12.	(B,D)	
13.	(ABD)	14. (ACD)		15.(AB	SCD)		16.	(AB)	
17.	(ABC)	18.(ABD)		19.(AC	C)		20.	(ABC)	
			Level	II					
21.	(CD) 22.	(ABC) 23.	(BCD)	24.	(ABD)	25.	(AC)		
26.	(AC) 27.	(BC)	28.	(ABC)	29.	(BC)		30.	(ABC)
Level III									
31.	(BCD) 32.	(ABC) 33.	(BCD)	34.	(BCD)	35.	(ABD)		

Comprehension										
Passa	age-1	1.	(A)	2.	(D)	3.	(A)			
Passa	nge 2	4.	(B)	5.	(A)	6.	(B)			
Passa	nge 3	7.	(A)	8.	(C)	9.	(B)			
Passa	nge 4	10.	(D)	11.	(B)	12.	(D)			
Matri	ix Match	ing								
	1.	A - r,t]	B - p,t, C	C - q, D -	· s			2.	A - r, B	- t, C - p, D - s
	3.	A - q,t,	B - p, C	2 - r,t, D	- s,t					
Asser	rtion Rea	ason								
	1.	(A)	2	(B)	3.	(A)	4.	(D)	5.	(C)
	6.	(B)	7.	(B)	8.	(C)	9.	(A)	10.	(B)
Integ	Integer Type Questions									
	1.4	2.	2	3.4	4.1	5.	2			
	6.6	7.	1	8.3	9.	10).			
Subje	ective Ty	pe Que	stions							
1. 241.66 ml; 2. 0.30625; 3. 42%, 26.5%, 31.5							31.5%	4. 1.2 X	$K \ 10^{21}$	5. 130.16. 1.847 g 7.
	1.847 X	10-3%	8.14.0	9%	9. 0.18	75%	10.75.9	9, 16.2, 7	7.9	11. 82.32% 12. 18, 26
13.13.64g/litre 14.2.2415.79%										
Previous Year IIT-JEE Question										
	1.	(B)	2.	(B)	3.	(B)	4.	(A)	5.	(A)
	6.	(D)	7.	(C)	8.	(D)	9.	(C)	10.	(A)
	11.	(C)	12.	(D)	13.	(A)	14.	(A)	15.	(B)
	16.	(D)								

HINT AND SOLUTIONS

CONCEPTUAL QUESTIONS

- 1.
- 2.
- (B) 6 moles $KHC_2O_4 = 2$ moles $K_2Cr_2O_7$ 1 moles $KHC_2O_4 \circ 2/6 = 1/3$ moles of $K_2Cr_2O_7$ (A) In H_2SO_4 , sulphur has + 6 oxidation state. In carbonyl compounds metal has zero oxidation state. 3.

4. (i)
$$\overset{+3}{C}_{2} \overset{--}{O}_{4} \rightarrow 2 \overset{+4}{C} \overset{--}{O}_{2}$$
 oxidation

(ii)
$$\overset{+6}{S}O_4^{--} \rightarrow \overset{+4}{S}O_3^{--}$$
 reduction

(iii) $\operatorname{Mn}^{+6}O_4^{--} \rightarrow \operatorname{Mn}^{+7}O_4^{-}$ oxidation

(iv)
$$Fe^{+3} \rightarrow Fe^{+2}$$
 reduction

5.
$$\overset{0}{\text{Cl}_2} + \text{OH}^- \rightarrow \overset{-1}{\text{Cl}^-} + \overset{+5}{\text{ClO}_3} + \text{H}_2\text{O}$$

6. (D) HNO₂ can get oxidized and reduced .

7.
$$3 \overset{0}{\text{Cl}_2} + 6 \text{OH}^- \rightarrow 5 \overset{-1}{\text{Cl}^-} + \overset{+5}{\text{Cl}_3} + 3 \text{H}_2 \text{O}$$

8.
$$3Br_2 + 6CO_3^{--} + 3H_2O \rightarrow 5Br^{-+} + BrO_3^{-+} + 6HCO_3^{-+}$$

9.
$$\begin{array}{c} \overset{0}{\text{Cl}}_{2} + \text{OH}^{-} \rightarrow \overset{+1}{\text{Cl}} \text{IO}^{-} + \overset{-1}{\text{Cl}} \text{I}^{-} + \text{H}_{2} \text{O} \\ \\ \overset{+1}{\text{Cu}}_{2} \text{O} + 2\text{H}^{+} \rightarrow \overset{0}{\text{Cu}} + \overset{+2}{\text{Cu}}^{+2} + \text{H}_{2} \text{O} \\ \\ 2\text{H}\overset{+1}{\text{Cu}} \text{Cl}_{2} \rightarrow \overset{0}{\text{Cu}} + \overset{+2}{\text{Cu}}^{+2} + 4\text{Cl}^{-} + 2\text{H}^{+} \end{array}$$

10.
$$2\text{FeS}_2 + \frac{11}{2}\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 4\text{SO}_2$$

 $\cdot \cdot$ two moles of FeS_2 losing 22e^-

 \therefore n-factor of FeS₂ = 11

SINGLE CORRECT CHOICE

LEVEL - I

1.
$$CaCl_2 + 2AgNO_3 \rightarrow 2AgCl + Ca(NO_3)_2$$

$$n = \frac{4.31}{143.5}$$

BSC Academy

now SO_4^{2-} + BaCl₂ \longrightarrow BaSO₄ + 2Cl⁻ moles of BaSO₄ produced = moles of SO_4^{2-} = 0.25 Ag NO₃ + HCl \longrightarrow AgCl + H + NO₃⁻ 8. 143.5 gm 170 gm ... 143.5 gm AgCl is produced by 170 gm of AgNO₃ :. 2.125 gm AgCl is produced by $\frac{170 \times 2.125}{143.5}$ = 2.517 of AgNO₃ Now for the reaction eq. of $AgNO_3 = eq.$ of HCI or $\frac{2.517}{170} = \frac{25}{1000} \times N = 0.6$ Hence N = 0.6 $2H_2 + O_2 \rightarrow 2H_2O$ 9. 2 vol. H_2 give 2 vol. of H_2O vapours \therefore 10 vol. H_2O vapour will form Let the mass of $CaCl_2$ in sample = x gm 10. $CaCl_2$ + $Na_2CO_3 \longrightarrow CaCO_3$ + 2NaCl 111 gm 100 gm \therefore 111 gm CaCl₂ produces \longrightarrow 100 gm CaCO₃ x gm CaCl₂ produces $\longrightarrow \frac{100x}{111}gm$ CaCO₃ $\begin{array}{ccc} \mathsf{CaCO}_3 & \underline{\quad \land} & \mathsf{CaO} & + & \mathsf{CO}_2 \\ 100 \ \mathsf{gm} & & 56 \ \mathsf{gm} \end{array}$ \therefore 100 gm CaCO₃ produces \longrightarrow 56gm CaO $\left(\frac{100x}{111}\right)gm$ CaCO₃ produces $\longrightarrow \frac{56}{100} \times \frac{100}{111}gm$ CaO = $\frac{56x}{111}$ gm CaO since mass of CaO finally produced = 1.62 gm = 56x/111 x = 3.21 gm % of CaO in sample = $\frac{3.21}{10} \times 100 = 32.1\%$ 11. mass of oxide = 2gm mass of metal = 1.6gm mass of oxygen = 0.4gm Eq. wt of metal = $\frac{1.6 \times 8}{0.4} = 32$ $2NH_2OH \rightarrow N_2^0$ 12. n-factor = 1

$$\frac{1}{3} e_2(SO_4)_3 \rightarrow 2f^2 eSO_4$$
n-factor =2
Eq. wf = mw /2
$$13. \quad \frac{1}{6} e_7O_5 \rightarrow \frac{1}{6} r_2(SO_4)_3$$
No. of moles of electron required = 3
$$14. \quad \text{In acidic medium}$$

$$MnO_4^- \longrightarrow Mn^{+2} \quad \text{nf = 5/mole}$$

$$Cr_2O_7^{-7} \longrightarrow 2Cr^{*3} \quad \text{nf = 6/mole}$$
hence the amount of Fe(II) oxidized is more with Cr_2O_7^{-2}.
$$15. \quad \text{Meq. of } H_3SO_4 = 100^{\circ} 0.2^{\circ} 2 = 40$$
Meq. of NaOH = 100^{\circ} 0.2^{\circ} 1 = 20
m. eq. of H_2SO_4 remains non neutralized = 20
no. of gm eq of H_2SO_4 = N^{\circ} V

$$\frac{20}{100} = N \times \frac{200}{1000}, \quad \text{N = 0.1}$$

$$16. \quad (B) \quad K_{\text{Mn}}^{T_4} O_4 \longrightarrow M_{\text{m}} O_2$$
n = 3
$$\text{Molarity} = \frac{\text{Normality}}{n-factor} = \frac{1.8}{3} = 0.6$$

$$17. \quad (C) 2\text{NaOH + H}_2SO_4 @ \text{Na}_2SO_4 + 2\text{H}_2O \text{ (acid base reaction)}$$

$$18. \qquad (D)$$
n-factor of H_2O_2 = 2
n-factor of K_4[Fe(CN)_6] = 61
$$\because \frac{\text{mole of } H_2O_2}{1 \text{mole of } K_4Fe(CN)_6} = \frac{61}{2}$$

$$\therefore \text{ mole of } H_2O_2 = \frac{61}{2} \times 1 = 30.5$$

$$19. \qquad (D)$$

$$\text{BaCO}_3 \rightarrow \text{BaO + CO}_2 \uparrow$$

Molecular weight of $BaCO_3 = 137 + 12 + 3 \times 16 = 197$ \therefore 197 gm $BaCO_3$ produces 22.4 L CO₂(g) at S.T.P. $\therefore 9.85 \text{ gm produces } \frac{22.4}{197} \times 9.85 = 1.12L \text{ at S.T.P.}$ 20. (D) meq. of HCl = 27.15 × 0.245 $\therefore \text{ meq. of Ba(OH)}_2 = N \times 20 = 27.15 \times 0.245$ $N = \frac{27.15 \times 0.245}{20} = 0.333N$ as n-factor of Ba(OH)₂ is 2 $\therefore M = 0.333/2 = 0.166$

Moles of N₂ =
$$\frac{PV}{RT} = \frac{1 \times 36.9}{0.0821 \times 1000 \times 300}$$

= 1.5 × 10⁻³
∴ moles of salt = 1.5 × 10⁻³
lit of salt = 1.5 × 10⁻³ × 140.5
= 210.75 × 10⁻³ mg
= 210 mg

22. (a)

4% of NaOH is 100 gm solution \rightarrow 4 gm NaOH so 1000 gm solution \rightarrow 40 gm NaOH \rightarrow 1 mole NaOH So 1000 ml solution \rightarrow 1.2 mole NaOH Molarity = 1.2

23. (b)

4% NaOH is 100 ml solution \rightarrow 4 gm NaOH so 1000 ml solution \rightarrow 40 gm NaOH \rightarrow 1 mole NaOH so molarity = 1

24. (c) Three replaceable H so molarity $\times 3 =$ Normality

```
25. (a)

100 \times 0.01 \times 2 = v \times 0.2 \times 2

v = 5 \text{ ml}
```

Level-III

26. Let the number of sulphate ions in $FeSO_4$ be x The number of Fe^{2+} will be = number of sulphate = x The number of sulphate ions in $Fe_2(SO_4)_3 = x$

The number of Fe^{3+} per $\operatorname{SO}_4^{2-} = 2/3$ The number of Fe³⁺ for x SO₄²⁻ = 2/3 x Ratio = x : 2/3 x = 3 : 2Hence ans is B 27. Mass of nitrogen given = 7 gMass of nitrogen reacted = 80% of 7 g = 5.6 g $N_2 + 3/2 O_2 \ \mathbb{R} \ N_2 O_3$ 28 g $\rm N_2$ reacts with 48 g $\rm O_2$ to give $\rm N_2O_3$ 5.6 g of N₂ will react with $\frac{48}{28} \times 5.6$ g of O₂ 16 g O₂ has 6.022× 10²³ atoms $\frac{48}{28} \times 5.6 \text{ g of O}_2 \text{ has } \frac{6.022 \times 10^{23}}{16} \times \frac{48}{28} \times 5.6 \text{ atoms of O}_2 = 3.6 \times 10^{23} \text{ atoms}$ Hence the answer is B 28. ... 10L vol. at STP = 11.6gm :. 22.4L vol. = $\frac{11.6 \times 22.4}{10}$ M.W = 26 $EF = CH, MF = C_2H_2$ (A) 2 gm atom of nitrogen = 28 gm (B) 6 × 10^{23} atoms of C has mass = 12 gm 29. 3 × 10²³ atoms of C has mass = $\frac{12 \times 3 \times 10^{23}}{6 \times 10^{23}} = 6 gm$ (C) 1 mole of S has mass = 32 gm (D) 7.0 gm of Ag So, lowest mass = 6 gm of C. $BaCO_3 \longrightarrow BaO + CO_2^{\uparrow}$ 30. Molecular weight of $BaCO_3 = 137 + 12 + 3 \times 16 = 197$ 197 gm produces 22.4 L at S.T.P. \therefore 9.85 gm produces at S.T.P., $\frac{22.4}{107} \times 9.85 = 1.12$ $NV = N_1V_1 + N_2V_2$ 0.2 × 2 = 0.5 x + 0.1(2 - x) 31. 0.4 = 0.5 x + 0.2 - 0.1 x⇒0.2 = 0.4 x $x = \frac{1}{2}L = 0.5L$

32. 22400 cc of gas at STP has 6 × 1023 molecules ∴ 1.12 × 10⁻⁷ of gas at STP has $\frac{6 \times 10^{23} \times 1.12 \times 10^{-7}}{0.3 \times 10^{14}} = 0.3 \times 10^{14} = 3 \times 10^{12}$ 22400 $Ba(OH)_2 + CO_2 \longrightarrow BaCO_3 + H_2O$ 33. Atomic wt. of BaCO₃ = 137 + 12 + 16 × 3 = 197 No. of mole = $\frac{\text{wt. of substance}}{\text{mol wt.}}$ 1 mole of $Ba(OH)_2$ gives 1 mole of $BaCO_3$ \therefore 205 mole of Ba(OH)₂ will give .205 mole of BaCO₃ ∴ wt. of 0.205 mole of BaCO3 will be = 40.5 (a) $V_0^{+2} \otimes V_0^{+5/2} O_5$ 34. (b) Na (\mathbb{R}) Na (a^{+}) oxidation oxidation (c) $\operatorname{CrO_4^{+6}}^2 \otimes \operatorname{Cr_2O_7^{-2}}^2$ (d) Zn²⁺ ® Zn (Reduction) $MnO_4^{+7} \otimes MnO_4^{-2} = n = 1$ 35. ${}^{+7}_{MnO_4} \otimes {}^{+6}_{MnO_2} = n = 3$ + 7 ${}^{+7}_{MnO_4} \otimes {}^{+3}_{MnO_3} = n = 4$ $MnO_4^- \otimes Mn^{+2} =$ n = 5then 1, 3, 4, 5 then (C) is correct) $\operatorname{Cl}_{2}^{0} \otimes \operatorname{Cl}^{-} + \operatorname{ClO}_{3}^{-}$ 36. This is the example of disproportionation (C) is correct. 1 mole of $\operatorname{N}_2^2 \operatorname{H}_4 \otimes \operatorname{N}^+$ 10e⁻ 37. = 10 = change in oxidation number = 10 = 2(y + 2)= 10 = 2y + 42y = 6= y = +3(C) is correct.

38. 1 mole $Fe_2(C_2O_4)_3$ ° x mole of MnO_4 in acidic medium = gm eq. of $Fe_2(C_2O_4)_3$ = gm eq. of MnO_4^- = 1 × 6 = x + 5

 $x = \frac{6}{5}$ mole the ratio is x : y = 2 : 11 mole FeC_2O_4 o y mole MnO_4 $1 \times 3 = y \times 5 = y = 3/5$ (A) is correct. 3×10^{-3} mole of K₂Cr₂O₇ ^o 4.5×10^{-3} mole of X⁺ⁿ 39. $K_2Cr_2O_7 + X^{+n} \otimes XO_3^- + Cr^{+3}$ gm eq. of $K_2Cr_2O_7 = gm$ eq. of X^{+n} $3' 10^{-3'} 6 = 4.5' 10^{-3'} (5 - n) = (5 - n)$ = 4 = 5 - n= n = 5 - 4 = (+1)the (B) is correct X^{+n} is oxidized to XO_4^{-2} and XO_4^{-} 40. $X^{+n} \frac{3}{4} \frac{3}{40} X^{+6} O_4^{-2} \frac{3}{4} \frac{3}{10} X^{+7} O_4^{-2}$ For I, the change in oxidation number = (6 - n) $(6-n) = 4 \times n$ factor of oxidising agent For II, the change in oxidation number = 7 - 6 = 1= 1 X n factor of oxidizing agent. hence the n-factor of the oxidizing agent = 1 $6 - n = 4 \ge 1$ Hence Hence n = 2(C) is correct. 41. $As_{2}s_{3}^{+3} + H^{+} + NO_{3}s_{3} \otimes NO + H_{2}O + AsO_{4}s_{3}^{+5} + SO_{4}s_{4}^{+6} + SO_{4}s_{4}^{-2}$ n-factor of $As_2S_3 = 2 \times 2 \setminus 4 \mid 8 \times 3 + 24 + 4 = 28$. n = 28 $E = \frac{M}{28}$ (C) is correct

42. In chemical reaction

$$2\overset{+2}{C}uSO_4 + 4KI \otimes \overset{+1}{C}u_2I_2 + 2K_2SO_4 + I_2$$

n = 1
) is correct

(D)

43. Volume m of HCl neutralized by NaOH = (Caustic soda) = V₁ $N_1V_1 = N_2V_2$; 0.1 × V₁ = 0.2 × 30; V₁ = 60 ml = 40 ml 40 ml 0.1 HCl is now neutralized by KOH (0.25 N) \longrightarrow (HCl) $N_1V_1 = N_2V_2$ (KOH) 0.1 × 40 = 0.25 × V₂; V₂ = 16 ml

44. 10 ml 0.1 M FeSO₄ ° KMnO₄ in acidic medium gm. of FeSO₄ = gm eq. of KMnO₄ Mill eq.n of 10 ml of 0.02 M = $10 \times 0.02 \times 5$ = $10 \times 0.1 = 1$ (D) is correct

45. 1 M KMnO₄ mol 1 M K₂Cr₂O₇
For the oxidation of Fe²⁺ in acidic medium.
gm eq. of 1 M KMnO₄ = gm eq. of Fe²⁺
$$1 \times 1 \times v = 1 \times 5 = \times v$$

 $= 1/5 = Volume of KMnO_4$,
gm eq. of 1 M K₂Cr₂O₇ = gm eq. of Fe²⁺
 $= 1 \times 6 \times v = 1 \times 1 \times v$
Volume = 1/6
of K₂Cr₂O₇
then more amount of Fe²⁺ oxidized by 'KMnO₄' then (a) is correct

46. $KMnO_4 \circ 100 \text{ mg of } FeC_2O_4 \text{ in acidic solution}?$ gm eq. of $KMnO_4 = \text{ gm eq. of } FeC_2O_4$

$$\frac{0.1' \text{ V}' 5}{1000} = \frac{100' 10^{-3'} 3}{\text{M}} \quad (\text{Q FeC}_2\text{O}_4)$$
$$= \frac{0.1' \text{ V}' 5}{1000} = \frac{0.1' 3}{144}$$
$$C = \frac{0.1' 3' 1000}{0.1' 144' 5} = \frac{600}{144} = \frac{150}{36} = 4.1 \text{ ml}$$
(A) is correct

47. 60 ml of 0.1 M KMnO₄ ° excess of FeC_2O_4 in H_2SO_4 gm eq. of KMnO₄ = gm eq. of FeC_2O_4

$$= \frac{60' \ 0.1' \ 5}{1000} = \text{ Moles' } 3$$
$$= \text{ Moles} = \frac{60' \ 0.1' \ 5}{1000' \ 3} = \frac{0.5' \ 6}{3' \ 100} = 10^{-2} \text{ moles}$$

1 mole FeC₂O₄ given 2 mole then $\frac{1}{100}$ moles gives = $\frac{2}{100}$ more Volume of CO₂ = $\frac{2}{100}$ ' 22.4 litre = $\frac{2}{100}$ ' 22.400 ml = 448 ml (A) is correct

48. 10.78 gm of H_3PO_4 in 550 ml of 0.4 N

$$N = \frac{W' \ 1000}{E' \ Volume}$$

= 0.4 = $\frac{10.78' \ 1000}{E' \ 550}$
E = $\frac{10.78' \ 1000}{550' \ 0.4} = \frac{1078}{55' \ 0.4}$
E = 49
E = $\frac{M}{E} = \frac{98}{49} = 2$
= (n = 2)

that means this acid H_3PO_4 has been neutralised by to ' HPO_4^{-2} Hence (A) is correct.

49. 1 vol. = 0.303 % : 20 vol. = 20 × 0.303 % = 6.06%

50. Let the volume the of $H_2O_2 = x \text{ mL}$ Then m eq. of $H_2O_2 = m$ eq. of O_2

$$x mL \times \frac{22.4}{5.6} N = \frac{2240}{22400} \times 4 \times 1000$$
 $x = 100 mL$

Level-III

- 51. n-factor of $FeC_2O_4 = 3$ and n-factor of $Fe(SCN)_2 = 33$ Let the vol. of FeC_2O_4 required for oxidation = x mL, then m eq. of $FeC_2O_4 = m$ eq. of $Fe(SCN)_2$ x × 1 × 3 = 100 × 1 × 33 x = 1100 mL = 1.1 litre
- 52. m eq. of hypo= m eq. of Cu^{2+} = 25 m eq of Cu^{2+} (n = 1) = 25 mole of Cu^{2+}

$$\frac{\text{m mole of } \frac{\text{COOH}}{\text{COOH}}}{\text{m mole of KMnO_4}} = \frac{5}{2} \qquad \text{in m mole of oxalic acid} = \frac{5}{2} \times 10 = 25$$

$$\Rightarrow \frac{\text{m mole of Cu}^{12}}{\text{m mole of oxalic acid}} = \frac{25}{25} = 1 \Rightarrow \frac{\text{mole of Cu}^{12}}{\text{mole of oxalic acid}} = 1:1$$
53. n-factor of Ba(MnO_4)_2 = 10
n-factor of K_1[Fe(CN)_4] = 61
$$\therefore \frac{\text{mole of Ba(MnO_4)_2}}{\text{Imole of K_4, Fe(CN)_6}} = \frac{61}{10} \qquad \text{in mole of Ba(MnO_4)_2} = \frac{61}{10} = 1 = 6.1$$
54. 109% labeled oleum will contain 9 g H₂O, 40 g free SO₃, 60 g H₂SO₄
40 g (free)SO₃ = $\frac{1}{2}$ mole SO₃ (free) = y
60 g (H₂SO₄) = $\frac{60}{98} = x$ mole H₂SO₄ = $x \Rightarrow \frac{x+y}{x-y} = 9.9$
55. 366 ppm of HCO₃ ions means
= $\frac{366}{10}$ m moles of HCO₃ ions per litre solution = 6 m moles of HCO₃ ions per litre solution
= 3 m moles of Ca(HCO_3)_2 = 3 mole of Ca(OH)_2 is required
= 3 × 74 mg of Ca(OH)_2 per litre required = $\frac{3 \times 74}{2}$ mg of Ca(OH)₂ per 500 mL solution is required
= 0.111g
56. m eq. of Ba(MnO_4)_2 = 0.1 × 375 g = 37.5 g
% purity of Ba(MnO_4)_2 = \frac{37.5}{55} × 100 = 68.18\%
57. moles of I₂ formed = 3 × moles of KIO₃ = 3 × $\frac{0.57}{214}$
m eq. of I₂ formed (n f = 2) = 3 × $\frac{0.57}{214} \times 2 \times 1000$
58. Element %(a) At wt. (b) a/b Ratio
X = 50 = 0.0 + 1.5 + 375 = 100 = 50 = 0.5 + 1000 = 50 = 0.5 + 1000 = 50 = 0.5 + 1000 = 50 = 0.5 + 1000 = 50 = 0.5 + 1000 = 50 = 0.5 + 1000 = 50 = 0.5 + 1000 = 50 = 0.5 + 10000 = 0.5 + 1000 = 0.5 + 10000 = 0.5 + 10000 = 0.5 + 10000 = 0.5 +

59. Density = 1 g/ml for water hence for water 1 g = 1 ml 0.0018 ml = 0.0018 gm No. of moles = $\frac{weight}{Molecular weight} = \frac{0.0018}{18} = 1 \times 10^{-4}$ ∴ No. of water molecules = 6.023 × 10²³ × 1 × 10⁴ = 6.023 × 10¹⁹ 60. CaCO₃ → CaO + CO₂ 10 gm 90% pure 9 gm = $\frac{9}{100}$ mole CaCO₃ = CO₂ = 0.09 mole At NTP vol. CO₂ = 0.09 × 22.4 = 2.016 L

MORE THAN ONE ANSWER QUESTIONS

Level-I

1. (A), (B)

(A) N =
$$\frac{3 \times 1000 \times 1}{60 \times 250} = 0.2$$

(B) N = $\frac{5.7 \times 1000 \times 6}{342 \times 500} = 0.2$
(C) $0.2 \times 2 = 0.4$
(D) $\frac{0.2 \times 1000}{500} = 0.4$

2. (A), (C)
(A)
$$K_4[Fe(CN)_6] \rightarrow K^+ + Fe^{3+} + CO_2 + NO_3^- (n_f = 61)$$

(B) $Cu_2S \rightarrow Cu^{2+} + SO_3 (n_f = 10)$
(C) $Fe(SCN)_3 \rightarrow Fe^{3+} + SO_3 + CO_2 + NO_3^- (n_f = 48)$
(D) $K_2[Cu(CN)_4] \rightarrow K^+ + Cu^{2+} + CO_2 + NO_3^- (n_f = 40)$

3. (A), (B), (C), (D)

$$K_{2}CrO_{4} \Rightarrow 2 + x - 8 = 0 \Rightarrow x = +6$$

$$K_{2}Cr_{2}O_{7} \Rightarrow 2 + 2x - 14 = 0 \Rightarrow x = +6$$

$$KCrO_{3}Cl \Rightarrow l + x - 6 - l = 0 \Rightarrow x = +6$$

$$Cr(O_{2})_{2}O \Rightarrow x - 2 \times 2 - 2 = 0 \Rightarrow x = +6$$

4. (**B**), (**C**), (**D**) $3\text{Sn}^{+2} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 3\text{Sn}^{+4} + 2\text{Cr}^{+3} + 7\text{H}_2\text{O}$

(a)
$$x: y = \frac{3}{1} \implies 3:1$$

(b) $x + y + z = 3 + 1 + 14 = 18$
(c) $\frac{a}{b} = \frac{3}{2} \implies 3:2$
(d) $z - c = 14 - 7 = 7$

- 5. (A), (B), (C), (D)
- 6. (A), (B), (D)
- 7. (A), (B), (D)
- 8. (B), (D)
- 9. (B), (C) Meq of NaOH = 0.01 (x - y) and meq. of Na₂CO₃ = 0.02y \therefore B and C are possible.

10.
$$3Sn^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 3Sn^{3+}2Cr^{3+} + 7H_2O$$

11.
$$2MnO_{4}^{-} + 4H^{+} + Br_{2} \rightarrow 2Mn^{+2} + 2BrO_{3}^{-} + 2H_{2}O$$
n-factor for $MnO_{4}^{-} = 5$
Eq. Wt = $M_{x}/5$
n-factor for $Br_{2} = 10$
Eq. Wt = $M_{y}/10$
Ratio of n-factor $\stackrel{+2}{Mn}n^{+2} \rightarrow \stackrel{+7}{Mn}nO_{4}^{-}$
 $2\stackrel{+5}{Br}O_{3}^{-} \rightarrow \stackrel{0}{B}r_{2} = 1:1$
12. $Fe_{0.95}O + O_{2} \rightarrow Fe_{2}O_{3}$
Let x is the fraction of Fe^{+3} in the compound then $Fe^{+2} = (0.95 - x)$

 $x \times 3 + (0.95 - x) \times 2 - 2 = 0$ x = 0.1

13.
$$2\text{FeS}_2 + \frac{11}{2}\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + 4\text{SO}_2$$

n-factor = 11
Eq. Wt = M/11

14. NaOH and NaHCO₃ in solution react together

 $\begin{array}{c} NaOH + NaHCO_3 \rightarrow Na_2CO_3 + H_2O \\ 40gm \quad 84gm \end{array}$

$$\frac{40}{40} = 1$$
mol $\frac{84}{84} = 1$ mol

After reaction solution will have two moles of Na_2CO_3 in 1 litre

For phenolphthalein m.Eq of $Na_2CO_3 = m.Eq$ of HCl

 $20 \times 2 \times 1 = V \times 1 \Longrightarrow V = 40mL$ For methyl orange after first end point

m.Eq of $NaHCO_3$ = m.Eq of Na_2CO_3 = m.Eq of HCI

 $2 \times 20 \times 1 = 1 \times V \implies V = 40 \text{mL}$ For methyl orange if used from very beginning m.Eq Na₂CO₃ + m.Eq of NaHCO₃ = m.Eq of HCI

 $2 \times m.Eq$ of Na₂CO₃ = m.Eq of HCl

 $2 \times 20 \times 2 = 1 \times V \Longrightarrow V = 80 \text{mL}$

15. $Ba(MnO_4)_2 \rightarrow 2Mn^{+2}$

n-factor = 10

m.Eq of Ba(MnO₄)₂ in 150mL \Rightarrow 150 × 10 × $\frac{1}{10}$ = 150 m.Eq m.Eq of 1MFe⁺⁺ \rightarrow Fe⁺⁺ = 150 x 1 = 150m.Eq m.Eq of 50mL 1M FeC₂O₄ \rightarrow Fe⁺⁺⁺ + 2CO₂ = 50 × 3 = 150 m.Eq m.Eq of 75mL 1M C₂O₄⁻⁻ \rightarrow 2CO₂ = 75 × 2 = 150 m.Eq m.Eq of 25mL 1M Cr₂O₇⁻⁻ \rightarrow 2Cr⁺³ = 25 × 6 = 150 m.Eq

- 16. •• molarity and normality involves the use of volume of solution. Volume changes with temperature hence normality and molarity change with temperature.
- 17. $H_3PO_4 + Ca(OH)_2 \longrightarrow CaHPO_4 + 2H_2O$ n-factor for $H_3PO_4 = 2$ (since $2H^+$ ions are replaced) eq. wt. $= \frac{M}{2} = \frac{98}{2} = 49$ resulting solution of CaHPO₄ have only one replaceable H⁺ so nf = 1

hence no. of eq = 1 for 1 mole so can be neutralized by 1 mole of KOH eq of CaHPO₄ = eq. of KOH For complete neutralization - no. of eq. of H_3PO_4 = no. of eq. of Ca(OH)₂ 1 × 3 = 1.5 × 2 can be neutralized.

18. no. of eq. of H_2SO_4 = moles × n factor = 1 × 2 = 2

no. of eq. of Ca(OH)₂ = 1 × 2 = 2 (neutralized) no. of eq. of NaOH = 2 × 1 = 2 (neutralized) no. of eq. of NH₃ = 2 × 1 = 2 (neutralized) H₂SO₄ + Ca(OH)₂ = CaSO₄ + 2H₂O 2NaOH + H₂SO₄ \longrightarrow Na₂SO₄ + 2H₂O 2NH₃ + H₂SO₄ \longrightarrow 2NH₄⁺ + SO₄²⁻

 In presence of phenolphthalein to detect Ist end point.
 NaOH + HCI → NaCl + H₂O (Full eq. of NaOH)
 Na₂CO₃ + HCI → NaHCO₃ + NaCl (1/2 eq. of Na₂CO₃) methyl orange is used to detect final end point. Where rest of 1/2 eq of Na₂CO₃ will be neutralized NaHCO₃ + HCl → NaCl + H₂CO₃ → (H₂O + CO₂)

20.
$$3\overset{+1}{C}|O^- \rightarrow \overset{+5}{C}|O_3^- + 2\overset{-1}{C}|^-$$

It is a disproportionation reaction, which incluces both oxidation and reduction of same element

Level-II

21. (C,D)

 $CO + CO_2$

- a b
- $\therefore \qquad a+b=1$ $CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$ $Meq. of CO_2 = Meq. of NaOH = 1 × 1000$ $<math display="block">\therefore \qquad Mole of CO_2 = \frac{1 \times 1000}{2 \times 1000} = 0.5 \qquad (n.f. of CO_2 = 2)$ $CO + \frac{1}{2}O_2 \rightarrow CO_2$ $\therefore \qquad 0.5 CO_2 \text{ is formed more.}$
- \therefore NaOH required more = 2 litre of 1/2 M NaOH = 56 g KOH = 1 mole KOH.

22. (ABC)
$$\frac{H_2SO_4 + SO_3}{a}$$

∴ $a + b = 2$ (i)
Also, Meq. of $H_2SO_4 + Meq.$ of $SO_3 = Meq.$ of NaOH
 $\frac{a}{49} \times 1000 + \frac{b}{40} \times 1000 = 0.1 \times 432.5$
∴ $4a + 49b = 84.77$ (ii)
∴ $a = 1.47 b = 0.53$ ∴ Equivalent of $H_2SO_4 = \frac{1.47}{49} = 0.03$
∴ $SO_3 + H_2O \rightarrow H_2SO_4$ Eq. of $SO_3 = \frac{0.53}{40} = 0.01325$
Weight of H_2O to react with $SO_3 = \frac{0.53 \times 18}{80} = 0.11925$
∴ 108.11% oleum = 100 g $H_2SO_4 + 8.11$ g $H_2O = 100$ g $H_2SO_4 + \frac{8.11 \times 80}{18}$
 $= 100$ g $H_2SO_4 + 36$ g $SO_3 = 1.36$ g oleum
136 g oleum has $\frac{36 \times 2}{136} = 0.53$ g SO_3
∴ 2 g oleum has $\frac{36 \times 2}{136} = 0.53$ g SO_3
∴ 9 of free $SO_3 = \frac{0.53 \times 100}{2} = 26.5$
23. (BCD) $2V^{2+} \rightarrow (V^{5+})_2 + 6c$
 $2e + (Fe^{3+})_2 \rightarrow 2Fe^{2+} \times 3$
∴ $2VO + 3Fe_2O_3 \rightarrow 6FeO + V_2O_5$ $E = \frac{M}{3} E = \frac{M}{2} E = \frac{M}{3/2}$ $E = \frac{M}{6}$
24. (ABD) H_3PO_3 is dibasic acid.
25. (AC) $[SO_2CI_2] = \frac{2.70 \times 1000}{135 \times 100} = 0.2M$
 $SO_3CI_2 + 2H_2O \rightarrow H_2SO_4 + 2HCI$
 100×0.2
 $= 20$ 0 0 0
 0 20 20
∴ $M_{H,5O_4} = \frac{20}{1000}$; $M_{HCI} = \frac{40}{100}$

BSC Academy

26. (AC)
$$3.42 \text{ ppm Al}_2(SO_4)_3 \equiv \frac{96 \times 3 \times 3.42}{342} \text{ ppm } [SO_4^{2-}] = 2.88 \text{ ppm } SO_4^{2-}$$

 $\equiv \frac{27 \times 2 \times 3.42}{342} \text{ ppm } Al^{3+} = 0.54 \text{ ppm } Al^{3+}$
 $1.42 \text{ ppm } Na_2SO_4 \equiv \frac{96 \times 1.42}{142} \text{ ppm } SO_4 = 0.96 \text{ ppm } SO_4^{2-}$
 $\equiv \frac{46 \times 1.42}{142} \text{ ppm } Na^+ = 0.46 \text{ ppm } Na^+$
 $\therefore [Al^{3+}] = \frac{0.54 \times 10^3}{27 \times 10^6} = 2.0 \times 10^{-5} \text{ M}$
 $[SO_4^{2-}] = \frac{(2.88 + 0.96) \times 10^3}{96 \times 10^6} = 4 \times 10^{-5} \text{ M}$
 $[Na^+] = \frac{0.46 \times 10^3}{23 \times 10^6} = 2 \times 10^{-5} \text{ M}$
27. (BC) Meq. of $NaHC_2O_4 = 100 \times 0.1 = 10$

(BC) Meq. of NaHC₂O₄ = 100 × 0.1 = 10 Meq. of NaOH required = $10 = V_1 \times 0.1 \times 1$ (v.f. NaOH = 1) Meq. of KMnO₄ required = $10 = V_2 \times a \times 5$ (v.f. of KMnO₄ = 5)

$$\therefore \qquad \mathbf{V}_2 = \frac{10}{5a} \qquad \therefore \qquad \frac{\mathbf{V}_1}{\mathbf{V}_2} = \frac{100 \times 5a}{10}$$

If $M_{KMnO_4} = 0.1M$, then $10 = V_2 \times 0.1 \times 5$ $\therefore V_2 = 20 \text{ mL}$ (ABC) Meq. of $KMnO_4 = 100 \times 0.1 \times 5 = 50 = Meq.$ of $Na_2C_2O_4 + Meq.$ of $H_2C_2O_4$ a + b

m moles of Na₂C₂O₄ = $\frac{a}{2}$ \therefore m moles of C₂O₄ = $\frac{a}{2} + \frac{b}{2} = \frac{a+b}{2} = \frac{40+10}{2} = 25$ m moles of H₂C₂O₄ = $\frac{b}{2}$

29. (A) HNO₃ also oxides
$$Fe^{2+}$$
 whereas KMnO₄ oxidises HCl.

30. (ABC)
$$2Fe^{2+} \rightarrow (Fe^{3+}) + 2e$$
 Eq. wt. of $FeS_2 = \frac{M}{22/2} = \frac{M}{11}$

$$2(S^{-1})_2 \rightarrow 4(S^{4+}) + 20e$$
 Eq. wt. of $SO_2 = \frac{M}{20/4} = \frac{M}{5}$

 $\therefore \qquad 4e + O_2^0 \rightarrow 2(O^{-2})$ $\therefore \qquad 4FeS_2 + 7O_2 \rightarrow 2Fe_2O_3$ S has –1 oxidation state.

Level-III

31. (BCD Molar mass of gas
$$=\frac{0.220}{112} \times 22400 = 44$$

32. (ABC)

33. (BCD)
$$2Na_3PO_{4(aq)} + 3Ba(NO_3)_{2(aq)} \rightarrow Ba_3(PO_4)_{2(s)} + 6NaNO_{3(aq)}$$

Na₃PO₄ is the limiting reactant and is completely consumed.

Mol. of Ba₃(PO₄)₂ formed
$$=\frac{0.2}{2}=0.1 \text{ mol of Ba}(NO_3)_2 = \frac{3}{2} \times 0.2 = 0.3$$

Mol of unreacted Ba(NO₃)₂ = 0.5 - 0.3 = 0.2 = mol of Ba²⁺ ion
Mol of Na⁺ in solution = 0.2 × 3 = 0.6 ; Mol of NO₃⁻ in solution = 0.5 × 2 = 1

34. (BCD) NaNO₂ + NH₄Cl
$$\rightarrow$$
 NH₄NO₂ + NaCl; NH₄NO₂ \rightarrow N₂+2H₂O
NaNO₂ is limited reactant.
Mol of N₂ formed = mol of NH₄NO₂ formed = 0.5
Volume of N₂(STP) = 0.5 × 22.4 = 11.2 L; mass of N₂ = 0.5 × 28 = 14 g

35. (ABD)
$$2CO + O_2 \rightarrow 2CO_2$$
 The residual gas is CO.
Volume of CO oxidized = $2 \times 30 = 60$ ml; volume of $CO = 60 + 10 = 70$ ml
Volume of CO_2 initially present in the mixture = $100 - 70 = 30$ ml
Volume of CO_2 formed = 60 ml; Volume of CO_2 absorbed by KOH = $30 + 60 = 90$ ml

Passage-I

In aq. solution iodine exist in polyiodide ion (I_3^-) 1.

2.
$$2 \overset{+2}{\text{CuSO}}_4 \rightarrow \overset{+1}{\text{Cu}}_2 u_2^{-1}$$
, n-factor = 1

Eq. of $CuSO_4$ = Eq. of I_2 = Eq. of hypo 3.

$$\frac{Wt}{Eq.Wt CuSO_4} \times 1000 = 100 \times 1 \times 1$$

Wt. of CuSO_4 = $\frac{100}{1000} \times 159.5 = 15.95$ gm
% purity = 10%

Eq. of Hypo = Eq. of $CuSO_4.5H_2O$ 4.

$$100 \times 0.1 = \frac{x}{249.5} \times 1000$$
, x = 2.5 gm

- 5. Eq. of NaOH = Eq. of KHP $23.48 \times N = \frac{0.5468}{204} \times 1000$ Normality = 0.114 N ; molarity = 0.114M
- 6. Eq. of $KMnO_4 = Eq. of FeSO_4$

$$16.42 \times 0.1327 \times 5 = \frac{W}{152} \times 1000$$

W = 1.66 gm; no. of moles =
$$\frac{1.66}{152} = 1.09 \times 10^{-2}$$

- 7. $MnO_4^- \rightarrow Mn^{+2}$
- 8. \therefore 100 gm solution has 98 gm H_2SO_4

$$V = \frac{m}{\rho} = \frac{100}{1.84} = 54.34 \text{ mL}; \text{ M} = \frac{98 \times 1000}{98 \times 54.34} = 18.4$$
$$M_1 V_1 = M_2 V_2 \Longrightarrow 18.4 \times V_1 = 5000 \times 0.5$$
$$V_1 = 135.85 \text{ mL}$$

9. m eq. of CuSO₄ reacted = m eq. of Na₂S₂O₃ reacted (n - f = 8) = 50 ['] 1 ['] 8 = 400

$$\frac{Wt}{Eq.Wt.} \times 1000 = 400 \Rightarrow \frac{Wt}{149.5} \times 1000 = 400$$
Wt. = 59.8 gm; % purity $\Rightarrow \frac{59.8}{79.75} \times 100 = 75\%$

- 10. $214 \text{ g KIO}_3 = 1 \text{ mole of KIO}_3$ = 3 mole of I₂ (in the balanced chemical reaction) = 6 eq. of I₂ (n f = 2) = 6000 m eq. of I₂ Let the vol. of Na₂S₂O₃ = x mL, then (x ' 1) ' 8 = 6000 x = 750 mL
- 11. m mole of KMnO₄ used = 50 $\cdot \frac{1}{10} = 5$ m eq. of KMnO₄ used (n f = 5) = 25 m eq. of C₂O₄⁻² 25

m mole of
$$C_2 O_4^{-2}$$
 (n = 2) = $\frac{23}{2} = 12.5$

m eq. of $Na_2S_2O_3 = 2.5 = m$ eq. of Cu^{2+} (n = 1) m eq. of Cu^{2+} (n = 1) = 2.5 Difference in number of m moles of Cu^{2+} and $C_2O_4^{-2-} = 12.5 - 2.5 = 10$

12.
$$5KI + KIO_3 + 6HCI \rightarrow 3I_2 + 6KCI + 3H_2O$$

 $\frac{1.66}{166} = 10^{-2}moI$
moles of KIO_3 reacted = $\frac{1}{5} \times 10^{-2} = 2 \times 10^{-3}$
moles of I_2 formed = $3 \times 2 \times 10^{-3} = 6 \times 10^{-3}$

Match the Column

1.
$$(a - r, t), (b - p, t), (c - q), (d - s)$$

 $\stackrel{-3}{NH_3} \rightarrow \stackrel{+5}{NO_3}$ n-factor =8, Eq.Wt = Mw /8
 $\stackrel{+2}{F}e\stackrel{+3}{C_2}O_4 \rightarrow \stackrel{+3}{F}e^{+++} + 2\stackrel{+4}{CO_3}$ n-factor = 3, Eq.Wt = Mw / 3
 $H_2\stackrel{+6}{S}O_5 \rightarrow \stackrel{0}{S_8}$ n-factor = 6, Eq. Wt = Mw / 6
KMnO₄ $\rightarrow \stackrel{+2}{Mn}^{++}$ n-factor = 5, Eq. Wt = Mw / 5
2. $(a - r), (b - t), (c - p), (d - s)$
 H_3PO_4 is tribasic acid (n = 3); H_3PO_3 is dibasic acid (n = 2); H_3BO_3 is monobasic acid
(n = 1) and EDTA is tetrabasic acid (n = 4)
3. $(a - q, t), (b - p), (c - r, t), (d - s, t)$
 $K\stackrel{+7}{MnO_4} \rightarrow \stackrel{+2}{Mn}^{+2} (n - factor = 5)$
 $Ma\stackrel{+3}{C_2}O_4 \rightarrow Ma^{+2} + 2\stackrel{+4}{C}O_2 (n - factor = 2)$

$$MgC_{2}O_{4} \rightarrow Mg^{+2} + 2CO_{2} \text{ (n-factor = 6)}$$

$$K_{2}Cr_{2}O_{7} \rightarrow 2Cr^{+3} \text{ (n-factor = 6)}$$

$$\overset{+6}{Cr}O_{5} \rightarrow Cr_{2}O_{3} \text{ (n-factor = 3)}$$

ASSERTION/ REASON

1. $Na_2CO_3 + HCI \longrightarrow NaHCO_3 + NaCI$ $NaHCO_3 + HCI \longrightarrow NaCI + H_2O + CO_2$ From the above reactions it is clear that two moles of HCl are required for complete neutralization of Na_2CO_3 . The titre value with methyl orange correspond to complete neutralization of Na_2CO_3 and with phenolphthalein correspond to half neutralization of Na_2CO_3 .

2. Molality does not depend upon volume thus it does not depend upon temperature.

3.
$$\operatorname{Fe}_{S_2}^{2+} \xrightarrow{D_2} \operatorname{Fe}_{2}^{3+} O_3 + \operatorname{SO}_2^{4+}$$

- 4. Density change means m = d ' v mass of solution per unit volume changed hence mass of solute per unit volume changed and therefore molarity and morality will be changed.
- 5. n factor of P will be $\frac{2y}{x}$ and atomic mass = equivalent mass of P × n-factor of

$$P = E_p \times \frac{2y}{x}$$

6. Industrial H_2SO_4 is Oleum $(H_2S_2O_7)$ in which concentration is represented by this method. 9gm water is added

 $SO_3 + H_2O \rightarrow H_2SO_4$ 0.5ml 0.5ml SO_3 also present as 0.5mol or 40gm

- 6. Eq. Wt = M. W / valence factor
- 7. Urea is H₂NCONH₂

% of N =
$$\frac{28}{60}$$
100 = 46.6%

Urea is a covalent compound

8. M =
$$\frac{10\text{Dx}}{\text{M}_{s}}$$

where D = density of solution x = % by mass M_s = molar mass of solute.

9.
$$H = O = P = O = H$$
, thus only Na₂HPO₃ and NaH₂PO₃ salts are possible.

10. meq. = N × V (ml) = $\frac{\text{wt.}}{\text{Eq. wt}} \times 1000$. No doubt N decrease with dilution but V increases and thus meq. remain constant

INTEGER ANSWER TYPE QUESTIONS

 $0.01 \times n-f = 0.06 \times 3$ 1. n-f = 18 $18 = \left(\frac{2}{n} + 4\right) \times n$ n = 4 MnO_4^- would convert to Mn^{2+} . Therefore its 'n' factor would be 5. 2. :. Equivalents of $MnO_4 = 1.61 \times 10^{-3} \times 5 = 8.05 \times 10^{-3}$ Equivalents of $A^{n+} = 8.05 \times 10^{-3}$ 'n' factor of $A^{n+} = 5 - n$ \therefore (5 – n) × 2.68 × 10⁻³ = 8.05 × 10⁻³ n=2 3. : 100 g Haemoglobin has = 0.25 g Fe ∴ 86600 g Haemoglobin has = $\frac{0.25 \times 86600}{100}$ gFe = 224 g Fe i.e., 1 mole or N molecules of Haemoglobin has = $\frac{224}{56}$ g atom Fe = 4 g atom Fe 1 molecule of Haemoglobin has 4 atom of Fe. Let valencies of Cu in two oxides be x and y, then I oxide is $Cu_2O_{x_1}$; II oxide is Cu_2O_{y} 4. In I oxide : Equivalent of Cu = equivalent of oxygen where w, x, A and a are weight of Cu, at. wt. of Cu, valency of Cu and weight of oxygen. In II oxide : $\frac{W}{A/y} = \frac{a}{2 \times 8}$... (2) ($\cdot \cdot$ Oxygen used half of I) By eqs. (1) and (2) $\frac{x}{y} = \frac{2}{1}$ $2/y = 2/1 \implies y = 1$ the valency of Cu second oxide is 1 Meq. of oxalic acid in 16.68 mL = Meq of NaOH = $25 \times \frac{1}{15}$ 5. Meq of oxalic acid in 250 mL = $25 \times \frac{1}{15} \times \frac{250}{16.68} = 24.98$ $\therefore \frac{1.575}{(90+18x)/2} \times 1000 = 24.98 \therefore x \approx 2$ 6. 6 Let the ox. no. of Cr in $K_2Cr_2O_7$ be x. We know that, ox. No. of K = +1ox. No. of O = -22(ox. no. K) + 2(ox. no.Cr) + 7(ox. No. O) = 0So, +2(x) +7(-)=02(+1)x = +6 \Rightarrow

BSC Academy

7. 1 $N_1V_1 = N_2V_2$ (Acid) (NaOH) $N_1 \times 2 = \frac{1}{5} \times 10$ $N_1 = \frac{1}{5} \times \frac{10}{2} = 1$

8.

3

Number of moles of KMnO₄ = $\frac{MV}{1000} = \frac{0.145 \times 46.9}{1000} = 6.8 \times 10^{-3}$ Number of moles of H₂O₂ = $6.8 \times 10^{-3} \times 2.5 = 0.017$ Mass of H₂O₂ = $0.017 \times 34 = 0.578$ Mass % of H₂O₂ = $\frac{0.578}{20} \times 100 = 2.9$

SUBJECTIVE QUESTIONS

 $MnO_2 + 4 HCI \longrightarrow MnCl_2 + 2H_2O + Cl_2$ 1. Number of moles of $Cl_2 = \frac{1.78}{22.4} = 0.07946$ Number of moles of $MnO_2 = 0.07946$ \therefore Mass of MnO₂ = 0.0794 × 87 = 6.913 g :. Number of moles of HCl = 4 x 0.07946 = 0.3178 mass of HCI = 0.3176 × 36.5 Let the volume of HCI = V mI :. $V \times 1.2 \times \frac{4}{100} 4 \times 0.317 \times 36.5 = 241.66 \text{ mL}$ m. Eq of H_2O_2 in 10mL = me of $KMnO_4$ = 0.0245 \times 5 \times 25 = 3.0625 2. In 100mL = 30.625 m.Eq \therefore 100mL solution contains 30.625 \times 10⁻³ eq : 1000mL $= 30.625 \times 10^{-3} \times \frac{1000}{100} = 30.625 \times 10^{-2} = 0.30625 \text{N}$ 3. Out of Na2CO3 NaHCO3 and Na2SO4 only NaHCO3 decomposes on heating to give CO2 gas, according to the equation $2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O_3$ moles of $CO_2 = \frac{PV}{RT} = \frac{750 \times 123.9}{760 \times 1000 \times 0.082 \times 298} = 5 \times 10^{-3}$

:. moles of NaHCO³ =
$$2 \times 5 \times 10^{-3} = 0.01$$

Equivalents of HCl used = $\frac{150 \times (1/10)}{1000} = 1.5 \times 10^{-2}$ Equivalents of NaHCO₃ in 1.5 g = 0.01 × $\frac{1.5}{2}$ = 7.5 × 10⁻³ :. Equivalents of $Na_2CO_3 = 1.5 \times 10^{-2} - 7.5 \times 10^{-3} = 7.5 \times 10^{-3}$ Moles of Na₂CO₃ = $\frac{7.5 \times 10^{-3}}{2}$ (when Na2CO3 reacts with HCI it gives NaCI, CO2 and H2O. No atom undergoes change in oxidation state. \therefore 'n' factor of Na₂CO₃ = 2) = 3.75 × 10⁻³ Mass of NaHCO₃ in 1.5 g = $7.5 \times 10^{-3} \times 84 = 0.63$ g Mass of Na₂CO₃ in 1.5 g = $3.75 \times 10^{-3} \times 106 = 0.3975$ g \therefore mass of Na₂SO₄ = 1.5 - 0.63 - 0.3975= 0.4725 g Percentage of NaHCO₃ = $\frac{0.63}{1.5} \times 100 = 42\%$ Percentage of Na₂CO₃ = $\frac{0.3975}{1.5} \times 100 = 26.5\%$ Percentage of Na₂SO₄ = $\frac{0.4725}{1.5} \times 100 = 31.5\%$ Total moles of the mixture = $\frac{1}{22.4} = 0.0446 = 4.46 \times 10^{-2}$ Equivalents of Na₂S₂O₃ solution = $\frac{40}{1000} \times \frac{1}{10} = 4 \times 10^{-3}$ Equivalents of $I_2 = 4 \times 10^{-3}$ equivalents of $\overline{KI} = 4 \times 10^{-3}$ equivalents of $O_3 = 4 \times 10^{-3}$ when O_3 reacts with KI it converts to O_2 and O^{-2} \therefore the 'n' factor for O₃ in this reaction is 2 moles of $O_3 = \frac{4 \times 10^{-3}}{2} = 2 \times 10^{-3}$ moles of $O_2 = 4.46 \times 10^{-2} - 2 \times 10^{-3} = 4.26 \times 10^{-2}$:... mass percent of ozone in the mixture = $\frac{2 \times 10^{-3} \times 48}{2 \times 10^{-3} \times 48 + 4.26 \times 10^{-2} \times 32} \times 100 = 6.57\%$ number of O₃ molecules = $2 \times 10^{-3} \times 6.023 \times 10^{23} = 1.2 \times 10^{21}$: number of photons required = 1.2×10^{21} Potassium selenate is isomorphous to K₂SO₄ and thus its molecular formula is K₂SeO₄. Now molecular weight of $K_2 \text{SeO}_4 = (39 \times 2 + a + 4 \times 16)$ = (142 + a)where a is atomic weight of Se

5.

4.

 $(142 + a)g K_2 SeO_4 has Se = ag$ \therefore 100g K₂SeO₄ has Se = $\frac{a \times 100}{142 + a}$: :. :. % of Se = 45.52 = 45.52 a = 118.2 Also equivalent of $K_2 SeO_4 = \frac{Mol. \text{ wt.}}{2} = \frac{2 \times 39 + 118.2 + 64}{2} = 130.1$ $\left(\text{ Molarity} = \frac{\text{Normality}}{\text{No. of replaceable OH}^{-}} \right)$ 6. $N = M \times 2$ Thus Meq. of borax in solution = 50 ' 0.2 ' 2 = 20 $\therefore \frac{W}{M/2} \times 1000 = 20$ $\frac{W}{382/2} \times 1000 = 20$ \ w = 3.82g ·... For neutralization of HCI Meq. of HCI = Meq. of borax $25 \times 0.1934 = \frac{W}{382/2} \times 1000$ Weight of borax = 0.09235g For neutralization of H₂SO₄ Meq. of borax = Meq. of H_2SO_4 $\frac{W}{382/2} \times 1000 = 25 \times 0.1934 \times 2$ ·... Weight of borax = 1.847g The reactions are 7. $H_2O + 2KI + O_3 \longrightarrow 2KOH + I_2 + O_2$ Also $2e^- + I_2 \longrightarrow 2I^-$ And $2S_2^{2+} \longrightarrow S_4^{+5/2} + 2e^{-1}$ $P_{O_3} = \frac{7.5 \times 10^{-6} \times 0.0821 \times 300}{10} = 184.725 \times 10^{-7} \text{ atm}$ Volume % of $O_3 = 184.725 \times 10^{-7} \times 100 = 1.847 \times 10^{-3} \%$ $n_{CaCO_3} + n_{BaCO_3} = \frac{168}{22400} = = 7.5 \times 10^{-3}$ (1) 8. $2\mathsf{BaCO}_3 \longrightarrow 2\mathsf{BaCrO}_4 \longrightarrow \mathsf{BaCr}_2\mathsf{O}_7 \longrightarrow \mathsf{I}_2 + \mathsf{Na}_2\mathsf{S}_2\mathsf{O}_3$

9.

10.

eq. of Na₂S₂O₃ = eq. of I₂ = eq of BaCr₂O₇ = $\frac{20 \times 10^{-3} \times 0.05 \times 100}{10}$ = 1 × 10⁻² Moles of BaCr₂O₇ = $\frac{1}{6} \times 10^{-2}$ Moles of BaCrO₄ = $\frac{2}{6}$ (1 × 10⁻²) Moles of BaCO₃ = $\frac{1}{3} \times 10^{-2} = 3.33 \times 10^{-3}$ (2) Weight of BaCO₂ = 0.650 gm From equation (1) and (2) we get $= 4.17 \times 10^{-3}$ weight of CaCO₃ = $100 \times 4.17 \times 10^{-3}$ = 0.417 g weight of CaO = 1.249 - 0.656 - 0.417 = 0.176 % of CaO = $\frac{0.176}{1.249} \times 100 = 14.09\%$ Meq. of alkali added = $30 \times 0.04 = 1.2$ Meg. of alkali left = 22.48 × 0.024 = 0.54 Meq. of alkali for SO₂ and $H_2O_2 = 1.2 - 0.54 = 0.66$... Weight of alkali used = $\frac{0.66 \times 40}{1000}$ = 0.0264 ·... 80g NaOH reacts with 64g SO₂ :. 0.0264g NaOH reacts = $\frac{64 \times 0.0264}{80}$ = 0.021g SO₂ Now 64g SO₂ required = 32g S :. 0.021g SO₂ required = $\frac{32 \times 0.021}{64}$ = 0.0105g :...% of S = $\frac{0.0105}{5.6} \times 100 = 0.1875\%$ Let Al, Mg and Cu be a, b and c g respectively. 2AI + 2NaOH _____ 2NaAIO + 3H Mg + 2HCl \longrightarrow MgCl₂ + H₂ Cu + HCI ------ No reaction i.e., only AI reacts with NaOH and then only Mg reacts with HCI · . . a + b + c = 8.72b + c = 2.10 (Residue left after alkali treatment) c = 0.69 (Residue left after acid treatment) b = 6.62g· . . % of Al = $\frac{6.62}{8.72} \times 100 = 75.9$ · . .

BSC Academy

% of Mg =
$$\frac{1.41}{8.72} \times 100 = 16.2$$

% of Cu = $\frac{0.69}{8.72} \times 100 = 7.9$

11.
$$2\text{KCIO}_3 + 12\text{HCI} \longrightarrow 2\text{KCI} + 6\text{H}_2\text{O} + 6\text{CI}_2$$

 $\text{CI}_2 + 2\text{KI} \longrightarrow 2\text{KCI} + \text{I}_2$
Also Meq. of $\text{CI}_2 = \text{Meq. of Hypo} = 100 \times 1$
 $\left[\because \text{N}_{\text{Hypo}} 12.3 = 24.6 \times 0.5; \because \text{N}_{\text{Hypo}} = 1\right]$
Also mM of $\text{KCIO}_3 = \frac{2 \times \text{mM of CI}_2}{6} = \frac{2 \times 50}{6} = \frac{50}{3}$
Also $\frac{\text{W}}{122.5} \times 1000 = \frac{50}{3}$ [milli-mole (mM)= $\frac{\text{Wt.} \times 1000}{\text{mol. wt.}}$] $W_{\text{KCIO}_3} = 2.042$
% of $\text{KCIO}_3 = \frac{2.042}{2.48} \times 100 = 82.32\%$

12. Let atomic weight of P and Q are a and b respectively \therefore Molecular weight of P₂Q₃ = 2a + 3b and Molecular weight of PQ₂ = a + 2b Now given that 0.15 mole of P₂Q₃ weigh 15.9g

$$(2a+3b) = \frac{15.9}{0.15}$$
 $\left(\therefore \frac{\text{wt.}}{mol. \text{ wt.}} = mole \right)$

Similarly, $(a+2b) = \frac{9.3}{0.15}$

Solving these two equations b = 18, a = 26

13. Redox changes are

Case I: $Fe^{2+} \xrightarrow{Zn \, dust + H_2SO_4} Fe^{2+}$ (i.e. no change)

 $2e + Fe_2^{3+} \xrightarrow{Zn \text{ dust} + H_2SO_4} \rightarrow 2Fe^{2+}$

Zn dust is used as reducing agent and thus, Let a meq. of Fe^{2+} and b Meq. of Fe^{3+} be present in 25 mL solution. In case I, after reduction with Zn. Meq. of Fe^{2+} + Meq. of Fe^{2+} from $Fe^{3+} = a + b$ Now these are oxidized by $K_2Cr_2O_7$ Total meq. of $Fe^{2+} =$ Meq. of $K_2Cr_2O_7$

 $\label{eq:abs} \begin{array}{l} a+b=34.25\times\frac{l}{10} \\ a+b=3.425 \\ \mbox{Case II: If reduction is not made, the solution contains Fe^{2+} and Fe^{3+} of which only Fe^{2+} are oxidized by $K_2Cr_2O_7$. \\ Meq. of Fe^{2+} = Meq. of $K_2Cr_2O_7$ \\ \end{array}$

$$a = 22.45 \times \frac{1}{10}, a = 2.245$$
By equation (1) $b = 3.425 - 2.245 = 1.18$
Meq. of FeSO₄ = $a = 2.245$ (in 25 mL)
Meq. of Fe₂(SO₄)₃ = $b = 1.18$ (in 25 mL)
Milli equivalent of H₂O₂ = milli equivalent of I₂ = milli equivalent of Na₂S₂O₃
Milli equivalent of H₂O₂ = milli equivalent of Na₂S₂O₃
 \therefore Meq. of FeSO₄ = $a = 2.245$ Meq. of Fe₂(SO₄)₃ = $b = 1.18$
 \therefore Meq. of FeSO₄ = $a = 2.245$ Meq. of Fe₂(SO₄)₃ = $b = 1.18$
 \therefore Meq. of FeSO₄ = $a = 2.245$ \therefore M. wt. of Fe₂(SO₄)₃ = 400
 \therefore M. wt. of FeSO₄ = 152 \therefore Wt. of Fe₂(SO₄) in 25 mL=0.236g
 \therefore Wt. of FeSO₄ in 25 mL = 0.341g \therefore Strength of Fe₂(SO₄)₃ = 9.45g/litre
 \therefore Strength of FeSO₄ = 13.64g/litre

14. me of H_2O_2 in 50mL = me of hypo = 40 x 0.5 = 20me

Normality = $\frac{20}{50} = 0.4$ N; Molarity = $\frac{0.4}{2} = 0.2$ M (n = 2) Vol. Strength = M x 11.2 = 0.2 x 11.2

15. $\operatorname{K} \underbrace{\operatorname{Mn}}^{+7} O_4 \longrightarrow \underbrace{\operatorname{Mn}}^{+2} \operatorname{SO}_4$, $\operatorname{H}_2 \underbrace{\operatorname{C}}_2 O_4 \longrightarrow 2 \underbrace{\operatorname{C}}_2 O_2$ n-factor = 7 - 2 = 5 n-factor = 6 - 4 = 2 So, 0.5 M oxalic acid = 2 × 0.5 i.e. 1 N oxalic acid 0.1 M K₂Cr₂O₇ = 6 × 0.1 i.e. 0.6N K₂Cr₂O₇ No. of milli equivalents of oxalic acid reacted with it = (no. of milli equivalents of oxalic acid taken) -(no. of milli equivalents of KMnO₄ = Weight of KMnO₄ = 10 × 10⁻³ × 158 = 1.58g. Hence i.e. 79%

PREVIOUS YEAR IIT-JEE QUESTIONS

Previous IIT-JEE Questions Solutions

1. (C)
$$2+2(2+x-4)=0$$

or $x = 2 - 1 \implies x = +1$

2. (B) Tips/Formula

(i) Write balance chemical equation for given change.

(ii) Identify most electronegative element and find its oxidation state.

Method :

$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$

Oxygen being the most electronegative element in the reaction has the oxidation states of -1 (in H₂O₂) and -2 (in BaSO₄).

3. Write reaction for titration between Na_2CO_3 and HCl.

Method :

 $\underset{(Yellow \ colour \ with \ HPh)}{Na_2CO_{3(aq)}} + HCl_{(aq)} \rightarrow \underset{(no \ colour \ with \ HPh)}{NaHCO_3} + \underset{(Half \ neutralisation)}{NaCl_{(aq)}}$

From this reaction it is clear that

(i) 2 moles of HCl are required for complete neutralization of Na₂CO₃.

(ii) Titre value using phenolphthalein corresponds only to neutralization of Na_2CO_3 to $NaHCO_3$, i.e. half of the value required Na_2CO_3 solution.

(iii) Titre value using methyl orange corresponds to complete neutralization of Na₂CO₃

Both S and E are correct but S is not correct explanation of E.

4. Balance the reaction by ion electron method.

Oxidation reaction : $C_2O_4^{2-} \rightarrow 2CO_2 + 2e^-] \times 5$

Reduction reaction : $MnO_4^- + 8H^- + 5e^- \rightarrow Mn^{2+} + 8H_2O] \times 2$

Net reaction : $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 10CO_2 + 8H_2$

5. MnO_4^- oxides both Fe²⁺ and C₂O₄²⁻

FeC₂O₄ f Fe²⁺ + C₂O₄²⁻ Fe²⁺ + C₂O₄²⁻ ® Fe³⁺ + 2CO₂ + 3e⁻; MnO₄⁻ + 5e⁻ ® Mn²⁺

$$5\text{FeC}_2\text{O}_4^{\circ} 3\text{MnO}_4^{\circ} \text{ or } 1\text{FeC}_2\text{O}_4^{\circ} \frac{3}{5}\text{MnO}_4^{\circ}$$

6. (i) H_3PO_3 is dibasic acid

 $(ii) Normality = Molarity \times Basicity of acid$

Normality = $0.3 \times 2 = 0.6$

7. In an ion sum of oxidation states of all atoms is equal to charge on ion and in a compound sum of oxidation states of all atoms is always zero.

Oxidation state of Mn in $MnO_4^- = +7$

Oxidation state of Cr in $Cr(CN)_6^{3-} = +3$

Oxidation State of Ni in NiF $_6^{2-}$ = +4

Oxidation state of Cr in $CrO_2Cl_2 = +6$

9. (i) Oxidation is loss of electron and oxidation number increases during oxidation. Where as reduction is gain of electron and oxidation number decreases during reduction

(ii) In a disproportionation reaction same element undergoes oxidation and reduction during the reaction.

(iii) In decomposition reaction; a molecule breaks down in more than one atoms or molecules.

 $2ClO^{+1}_{(aq)} \otimes ClO_{3}^{+5} + 2Cl^{-1}_{(aq)}$

It is disproportionation reaction because Cl is both oxidized (+1 to +5) and reduced (+1 to -1) during reaction.

10. Eq. wt. of $H_2C_2O_4$. $2H_2O = Eq.$ wt. of NaOH Strength of $H_2C_2O_4$. $2H_2O$ (in g/L)

$$=\frac{6.3}{250/1000}=25.2\,\mathrm{g/L}$$

Normality of $H_2C_2O_4$.2 $H_2O = \frac{\text{Strength}}{\text{Eq. wt}} = \frac{25.3}{126/2} = 0.4 \text{ N}$

$$V_2 = \frac{0.4' \ 10}{01} = 40 \text{ml}$$

11. (i) Find change in oxidation number of Cr atom

(ii) Eq. wt. =
$$\frac{\text{Molecular wt.}}{\text{change in O.N.}}$$

In iodometry, $K_2Cr_2O_7$ liberates I_2 from iodides (NaI or KI) which is titrated with $Na_2S_2O_3$ solution $K_2Cr_2O_7 + I^2 + H^4 \otimes Cr^{3+} + I_2$

BSC Academy

Here, one mole of $K_2 Cr_2 O_7$ accepts 6 mole of electrons. $\begin{array}{l} & \text{Equivalent weight} = \frac{\text{Molecular weight}}{6} \\ 12. \quad (i) \text{ Mass of one electron} = 9.108 \times 10^{-31} \text{ kg} \\ (ii) 1 \text{ mole of electron} = 6.023 \times 10^{23} \text{ electrons} \\ \text{Weight of 1 mole of electron} \\ = \text{Mass of electron} \times \text{Avogadro Number} \\ = 9.108 \times 10^{-31} \times 6.023 \times 10^{23} \\ & \text{No. of moles of electrons in 1 kg} \\ \\ = \frac{1}{9.108' \ 10^{-31'} \ 6.023' \ 10^{23}} = \frac{1}{9.108' \ 6.023'} \ 10^{8} \end{array}$

13. Molecular weight in gms = 6.023×10^{23} atoms (i) Number of atoms in 24 g of C

$$=\frac{24}{12}$$
, 6.023' $10^{23}=2$ ' 6.023' 10^{23} atoms

(ii) Number of atoms in 56 g of Fe

$$=\frac{56}{56}$$
, 6.023' $10^{23} = 6.023' 10^{23}$ atoms

(iii) Number of atoms in 27 g of Al

$$=\frac{27}{27}$$
, 6.023' $10^{23} = 6.023' 10^{23}$ atoms

(iv) Number of atoms in 108 g of Ag

$$=\frac{108}{108}$$
' 6.023' 10^{23} = 6.023' 10^{23} atoms

 \sim 24 g of C has maximum number of atoms.

14. Write the reaction for chemical change during reaction and equate moles. Given mixture $x = 0.02 \text{ mol of } [Co(NH_3)_5SO_4] Br and 0.02 \text{ mol of } [Co(NH_3)_5Br] SO_4$ Volume = 2 L

- Mixture x has 0.02 mol. of $[Co(NH_3)_5SO_4]$ Br and 0.2 mol of $[Co(NH_3)_5Br]$ SO₄ in 2 L
- \land Conc. of [Co(NH₃)₅SO₄] Br and [Co(NH₃)₅Br]SO₄ = 0.01 mol/L for each of them
- (i) 1 L mixture of X + excess AgNO₃ \otimes Y

	$[Co(NH_3)_5SO_4]Br + AgNO_3$	R	$[Co(NH_3)_5SO_4]NO_3 + AgBr$
	0.1 mol/L soluble excess 0.01 mol		(Y)
./	No. of moles of $Y = 0.01$		
(ii)	$1 L$ mixture of Y + excess BaCl ₂ \otimes Z		
	$[Co(NH_3)_5Br]SO_4 + BaCl_2$	R	$[Co(NH_3)_5Br]Cl_2 + BaSO_4$
	0.1 mol/L soluble excess 0.01 mol		(Z) 0.01 mol/L
./	moles of $z = 0.01$.		

- 15. The sum of oxidation states of all atoms in compound is equal to zero and sum of oxidation states of all atoms in an ion is equal to charge on the ion.
 - (i) $[Fe(CN)_6]^{3-}$, O.N. of Fe = +3, $[CO(CN)_6]^{3-}$, O.N. of Co = +3
 - (ii) CrO_2Cl_2 , O.N. of Cr = +6, [MnO_4] O.N. of Mn = +7
 - (iii) TiO_3 , O.N. of Ti = 6, MnO_2 O.N. of Mn = +4MnO₃, O.N. of Mn = +6
- 16. $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \otimes 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ Mohr's salt $(FeSO_4.(NH_4)_2SO_4.6H_2O)$ and dichromate reacts in 6:1 molar ratio.

Subjective Questions

1. Let the amount of NaNO₃ in the mixture = x g

 \land The amount of Pb(NO₃)₂ in the mixutre = (5-x)g

Heating effect of sodium nitrate and hlead nitrate

$$\frac{2NaNO_{3}}{2(23+14+48)=170g} \sqrt[3]{4} \sqrt[9]{2} 2NaNO_{2} + \frac{O_{2}}{2'16=32g}$$

$$\frac{2Pb(NO_3)_2}{2(207+28+96)=662g} \xrightarrow{\frac{3}{4} \frac{B}{2}}{2PbO_2} + \frac{4NO_2}{4NO_2} + \frac{O_2}{4474974492} \underbrace{\frac{4}{4} \frac{3}{4} \frac{4}{4} \frac{4}{4$$

Thus, 170 g of NaNO₃ gives = 32 g of O_{2}

$$\land \qquad x \text{ g of NaNO}_3 \text{ gives} = \frac{32}{170} \times x \text{ g of O}_2$$

Similarly, 662 g of Pb(NO₃)₂ gives = 216 g of gases

$$(5-x)$$
 g of Pb(NO₃)₂ gives = $\frac{216}{662} \times (5-x)$ g of gases

Actual, loss, on heating, is 28% of 5 g of mixture

BSC Academy

$$= \frac{5' 28}{100} = 1.4g$$

$$\frac{32x}{170} + \frac{216}{662} = (5 - x) = 1.4$$

$$32x + 662 + 216 (5 - x) \times 170 = 1.4 \times 170 \times 662$$

$$21184 x + 183600 - 36720 x = 157556 - 15536x = 26044$$

$$x = 1.676 g$$
wt. of NaNO₃ = 1.676 g
and wt. of Pb(NO₃)₂ = 5 - 1.676 = 3.324 g
Molarity = $\frac{Mass \text{ of solute / M. wt. solute}}{Mass \text{ of solvent in kg}}$
Mass of H₂SO₄ in 100 ml of 93% H₂SO₄ solution = 93 g

$$Mass \text{ of H}_2SO_4 \text{ in 1000 ml of 93\% H}_2SO_4 \text{ solution = 93 - g}$$
Mass of H₂SO₄ = $\frac{Wt. \text{ of H}_2SO_4}{Mol. \text{ wt. of H}_2SO_4} = \frac{930}{98}$

$$Moles \text{ of H}_2SO_4 = \frac{Wt. \text{ of H}_2SO_4}{Mol. \text{ wt. of H}_2SO_4} = \frac{930}{98}$$

$$Moles \text{ of H}_2SO_4 = 10.43 \text{ mol.}$$

$$Molality \text{ of 1 litre solution = 10.43}$$

3. In the given problem, a solution containing Cu^{2+} and $C_2O_4^{2-}$ is titrated first with KMnO₄ and then with Na₂S₂O₃ in presence of KI. In titration with KMnO₄, it is the $C_2O_4^{2-}$ ions that react with the MnO₄⁻ ions. The concerned balanced equation may be written as below.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \otimes 2Mn^{2+} + 10CO_2 + 8H_2O$$

Thus according to the above reaction

 $2 \text{ mol } MnO_4^{-\circ} 5 \text{ mol of } C_2O_4^{2-}$

However,

No. of mmol of MnO_4^- and used in titration = Vol. in ml × M = 22.6 × 0.02 = 0.452 mmol MnO_4^-

 $\land \qquad \text{Molar ratio of } \text{Cu}^{2+} \text{ to } \text{ } \text{C}_2 \text{O}_4^{2-} = \frac{0.565 \text{ mmol}}{1.130 \text{ mmol}} = 1:2$

2.

4. Mass of
$$\text{Fe}_2\text{O}_3$$
 in the sample $=\frac{55.2}{100}$, $1=0.552\text{g}$

Number of moles of $\text{Fe}_2\text{O}_3 = \frac{55.2}{159.8} = 3.454' \ 10^{-3}$

Number of moles of Fe³⁺ ions = $2 \times 3.454 \times 10^{-3} = 6.9 \times 10^{-3}$ mol = 6.90 mmol

Since there is only 1 electron is exchanged in the conversion of Fe^{3+} to Fe^{2+} , the molecular mass is the same as equivalent mass.

 $\land \qquad \text{Amount of Fe}^{2+} \text{ ion in 100 ml. of sol.} = 6.90 \text{ meq.}$

Volume of oxidant used for 100 ml of Fe^{2+} sol. = $17 \times 4 = 68$ ml.

Amount of oxidant used = 68×0.0167 mmol = 1.1356 mmol

Let the number of electrons taken by the oxidant = n

$$\land$$
 No. of meq. of oxidant used = 1.1356 \times n

Thus $1.1356 \times n = 6.90$

$$n = \frac{6.90}{1.1356} = 6$$

5. 1.5 g of sample require = 150 ml. of
$$\frac{M}{10}$$
 HCl

$$2 \text{ g of sample require} = \frac{150'}{1.5} \text{ ml. of } \frac{\text{M}}{10} \text{ HCl}$$
$$= 200 \text{ ml. of } \frac{\text{M}}{10} \text{ HCl}$$

On heating, the sample, only
$$\mathrm{NaHCO}_3$$
 undergoes decomposition as below :

$$\begin{array}{ccc} 2NaHCO_3 & \mathbb{R} & Na_2CO_3 + H_2O + CO_2 - \\ 2 \text{ moles} & 1 \text{ mole} \\ 2 \text{ equ.} & 1 \text{ mole} \end{array}$$

Neutralization of the sample with HCl takes place as below.

NaHCO₃ + HCl
$$\circledast$$
 NaCl + H₂O + CO₂
1 eq. 1 eq.
Na₂CO₃ + 2HCl \circledast 2NaCl + H₂O + CO₂
1 mole 2 mole
2 eq. 2 eq.
Hence, 2 g sample ° 200 ml. of M/10 HCl

= 200 ml. of N/10 HCl = 20 meq. = 0.020 eq.

Number of moles of CO₂ formed, i.e. $n = \frac{PV}{RT} = \frac{750}{760}, \frac{123.9}{1000}, \frac{1}{0.082}, \frac{1}{298} = 0.005$

Moles of NaHCO₃ in the sample $(2g) = 2 \times 0.005 = 0.01$ Equivalent of NaHCO₃ = 0.01 Wt. of Na₂CO₃ = 0.01 × 53 = 0.53 g

\ % of Na₂CO₃ =
$$\frac{0.53' \ 100}{2}$$
 = 26.5%

% of Na₂SO₄ in the mixture = 100 - (42 + 26.5) = 31.5%

6. Reaction involved titration is

 $KIO_3 + 2KI + 6HCl \otimes 3ICl + 3KCl + 3H_2O$ 1 mole 2 mole

20 ml. of stock KI solution = 30 ml. of $\frac{M}{10}$ KIO₃ solution

Molarity of KI solution
$$= \frac{30' 1' 2}{20' 10} = \frac{3}{10}$$

Millimoles in 50 ml. of KI solution = 50' $\frac{3}{10} = 15$

Millimoles of KI left unreacted with AgNO₃ solution = 2' 50' $\frac{1}{10}$ = 10

 \land Millimoles of KI reacted with AgNO₃

Millimoles of $AgNO_3$ present $AgNO_3$ solution = 5 Molecular weight of $AgNO_3$

Wt. of AgNO₃ in the solution = $5 \times 10^{-3} \times 170 = 0.850$ g

% AgNO₃ in the sample = $\frac{0.850}{1}$ / 100 = 85%

7. Calculation of number of moles in 45 ml of $0.025 \text{ M Pb}(\text{NO}_3)_2$

Moles of $Pb(NO_3)_2 = 0.25$ ' $\frac{45}{1000} = 0.01125$

Initial moles of $Pb^{2+} = 0.01125$

Moles of $NO_3^- = 0.01125' \ 2 = 0.02250$

Calculation of number of moles in 25 ml. of 0.1 M chromic sulphate

Moles of chromic sulphate $\operatorname{Cr}_2(\operatorname{SO}_4)_3 = 0.1' \frac{25}{1000} = 0.0025$ moles

Moles of $SO_4^{2-} = 0.0025 \times 3 = 0.0075$

Moles of PbSO₄ formed = 0.0075

Moles of Pb^{2+} left = 0.01125 - 0.0075 = 0.00375

Moles of NO_3^- left = 0.02250

Moles of chromium ions = $0.0025 \times 2 = 0.005$

Total volume of the solution = 45 + 25 = 70 ml.

\ Molar concentration of the species left.

(i)
$$Pb^{2+} = \frac{0.00375}{70}$$
, $1000 = 0.05357 M$

(ii)
$$NO_3^2 = \frac{0.225}{70}$$
, $1000 = 0.3214 M$

(iii)
$$Cr^{3+} = \frac{0.005}{70}$$
, $1000 = 0.0714 M$

8. In pure iron oxide (FeO), iron and oxygen are present in the ratio 1 : 1.

However, here number of Fe^{2+} present = 0.93

or No. of Fe^{2+} ions missing = 0.07

Since each Fe²⁺ ion has 2 positive charge, the total number of charge due to missing (0.07) Fe²⁺ ions $= 0.07 \times 2 = 0.14$.

To maintain electrical neutrality, 0.14 positive charge is replacement of one Fe^{2+} ion by one Fe^{3+} ions. Now since, replacement of one Fe^{2+} ion by one Fe^{3+} ion increases one positive charge, 0.14 positive charge must be compensated in short, 0.93 Fe^{2+} ions have 0.14 Fe^{3+} ions.

$$100 \text{Fe}^{2+} \text{ ions have} = \frac{0.14}{0.93}, \ 100 = 15.05\%$$