Percentage
 Class Assignment
 Answers and explanations

Level-I

1. c; Let 2 be $x \%$ of 50
$\Rightarrow x \%$ of $50=2$
$\Rightarrow \frac{x}{100} \times 50=2$
$\Rightarrow \frac{x}{2}=2$
$\therefore x=4$
2. $\mathrm{d} ; \quad x \%$ of $\frac{1}{3}=\frac{2}{3}$
$\Rightarrow x \%=\frac{2 \times 3}{3}=2 \Rightarrow x=200 \%$
3. d; Guicker Method :

Required percentage $=\frac{70}{3.5 \times 1000} \times 100=2 \%$
4. $\mathrm{b} ; \quad 30 \%$ of $x=72$
$\therefore x=\frac{72 \times 100}{30}=240$
5. a; Let the number be x.

Now, according to the question,
$x \times \frac{18}{100}=75 \times \frac{12}{100}$
$\Rightarrow x=\frac{75 \times 12}{18}=50$
6. $\mathrm{b} ; \quad \frac{20(\mathrm{P}+\mathrm{Q})}{100}=\frac{50}{100}(\mathrm{P}-\mathrm{Q})$
$\Rightarrow \frac{P+Q}{P-Q}=\frac{5}{2}$
$\Rightarrow \frac{2 P}{2 \mathrm{Q}}=\frac{5+2}{5-2}$
[By componendo \& dividendo]
$\Rightarrow \frac{\mathrm{P}}{\mathrm{Q}}=\frac{7}{3}$
7. $a ; \quad(A+B) \times \frac{40}{100}=(A-B) \times \frac{60}{100}$
$\Rightarrow 2(\mathrm{~A}+\mathrm{B})=3(\mathrm{~A}-\mathrm{B})$
$\Rightarrow 2 \mathrm{~A}+2 \mathrm{~B}=3 \mathrm{~A}-3 \mathrm{~B} \quad \Leftrightarrow \mathrm{~A}=5 \mathrm{~B}$
Now, according to the question,
$\frac{2 A-3 B}{A+B}=\frac{10 B-3 B}{5 B+B}$
$=\frac{7 \mathrm{~B}}{6 \mathrm{~B}}=\frac{7}{6}$
8. b; Percentage of boys $=60 \%$
\therefore Percentage of girls $=40 \%$
Boys: Girls $=60: 40=3: 2$
Number of girls $=812$
\therefore Number of boys $=\frac{3}{2} \times 812=1218$
9. c; Let, $\mathrm{C}=100$
$\therefore \mathrm{B}=100 \times \frac{25}{100}=25$
$\therefore \mathrm{A}=\frac{20}{100} \times 25=5$
$\therefore x \%$ of $\mathrm{C}=5$
$\Rightarrow \frac{x}{100} \times 100=5$
$\Rightarrow x=5$
10. b; Required percentage increase $=\frac{x}{100-x} \times 100$
$=\left(\frac{20}{100-20}\right) \times 100=\frac{20}{80} \times 100=25 \%$
11. a; Guicker Method :

If A is $r \%$ more than B , then B is $\left(\frac{r}{100+r} \times 100\right) \%$ less than A.
$x=\left(\frac{10}{100+10} \times 100\right) \%=\left(\frac{1000}{110}\right) \%=\left(\frac{100}{11}\right) \%$
$=9 \frac{1}{11} \%$
12. a; Reqd. reduction in percentage
$=\left(\frac{100 \times 20}{100+20}\right) \%=\left(\frac{200}{12}\right) \%=\frac{50}{3} \%=16 \frac{2}{3} \%$
13. b; Required fractional decrease
$=\frac{\mathrm{R}}{100+\mathrm{R}}=\frac{50}{100+50}=\frac{1}{3}$
14. c ; Let the number be x.

Now, according to the question,
80% of $\mathrm{x}+80=x$
$\Rightarrow \frac{x \times 80}{100}+80=x$
$\Rightarrow \frac{4 x}{5}+80=x \Rightarrow \frac{x}{5}=80$
$\Rightarrow x=80 \times 5=400$
15. d ; Let the total number of votes be 100 .

Number of uncast votes $=8$
\therefore Number of votes polled $=92$

Number of votes obtained by the winner $=48$
\therefore Number of votes obtained by the loser
$=48-44=4$
If the difference of win be 4 votes, total voters $=100$
\therefore When the difference be 1100 votes, total
voters $=\frac{100}{4} \times 1100=27500$
16. c; Let the number of students in the class be 100.
\therefore Number of students in Biology $=72$ and the number of students in Maths $=44$.
\therefore Number of students opting for both subjects
$=72+44-100=16$
\because When 16 students opt for both subjects, total number of students $=100$
\therefore When 40 students opt for both subjects,
total number of students $=\frac{100}{16} \times 40=250$
17. d; Percentage of failures either in 1 subject or both subjects $=(35+45-20) \%=60 \%$
Percentage of the successful $=(100-60) \%$ = 40\%
18. a; Percentage of the candidates passing in English or Mathematics or both $=n(\mathrm{E})+n(\mathrm{M})$
$-n(\mathrm{E} \cap \mathrm{M})$
$=80+85-73=92$
\Rightarrow Percentage of candidates who failed in both the subjects $=100-92=8$

Type-II

1. b; Let the CP of each article be ` 100 and consumption be 100 units. Initial expenditure \(=`(100 \times 100)=` 10000\) New price of article \(=` 80\)
Consumption 120 units
Expenditure $=`(120 \times 80)=` 9600$
Decrease $=`(10000-9600)=` 400$
\therefore Percentage decrease $=\frac{400 \times 100}{10000}=4 \%$
2. a; Guicker Method :

If A is first increased by $x \%$ and then decreased
by y\% the net \% change $=\left(x-y-\frac{x y}{100}\right) \%$
If the result is positive, the change indicates increase and if the result is negative, the change indicates decrease.
Change in his salary
$=\left(20-20-\frac{20 \times 20}{100}\right) \%=\left(-\frac{400}{100}\right) \%=-4 \%$
3. b; Guicker Method :

A single equivalent reduction to reduction
series of $x \%, y \%=\left(x+y-\frac{x y}{100}\right) \%$
$=\left(10+10-\frac{10 \times 10}{100}\right) \%=(20-1) \%=19 \%$
4. a; Let the number be 100. After 20% increase, number $=120$
After 20\% increase of 120 , number
$=120 \times \frac{120}{100}=144$
\therefore Per cent decrease $=\frac{44}{144} \times 100$
$=\frac{275}{9}=30 \frac{5}{9} \%$
5. a; Guicker Method:

Let the required percentage be x.
Now, according to the question,
$30-x-\frac{30 x}{100}=0$
$\Leftrightarrow 300-10 x-3 x=0$
$\left(\right.$ Percentage Effect $\left.=\left(x+y+\frac{x y}{100}\right) \%\right)$
$\Rightarrow 13 x=300 \Leftrightarrow \mathrm{x}=\frac{300}{13}=23 \frac{1}{13} \%$
6. d; Income $=$ Rs 100

Expenditure $=$ Rs 60
Saving $=$ Rs 40
New Income = Rs 120
New Expenditure $=$ Rs 66
New Saving = Rs 54
\% Increase in saving $=\frac{14}{40} \times 100=35 \%$
7. b; Let the boys and girls in the village be $3 x$ and $2 x$ respectively.
Villagers who appeared in the examination
$=\frac{3 x \times 30}{100}+\frac{2 x \times 70}{100}=\frac{9 x}{10}+\frac{14 x}{10}=\frac{23 x}{10}$
Villagers who did not appear in the examination
$=\frac{3 x \times 70}{100}+\frac{2 x \times 30}{100}=\frac{21 x}{10}+\frac{6 x}{10}=\frac{27 x}{10}$
\therefore Required ratio $==\frac{23 x}{10}: \frac{27 x}{10}=23: 27$
8. c ; Let the income be ' x and the rate of income tax be y \%.
Now, according to the question,
$\frac{x y \times 1.19}{100}-\frac{x y}{100}=\left(x-\frac{x y}{100}\right) \times \frac{1}{100}$

$$
\begin{aligned}
& \Rightarrow 1.19 x y-x y=x-\frac{x y}{100} \\
& \Rightarrow 0.19 y=1-\frac{y}{100} \\
& \Rightarrow \frac{y}{100}+0.19 y=1 \Rightarrow y\left(\frac{1+19}{100}\right)=1 \\
& \Rightarrow y=\frac{100}{20}=5
\end{aligned}
$$

9. b; In 100 kg fresh fruit, water $=68 \mathrm{~kg}$ and pulb $=$ 3 kg
In dry fruit the quantity of pulp will remain the same as 32 kg which in 80% of dry fruit.
So lot of dry fruit $=\frac{32}{80} \times 100=40 \mathrm{~kg}$
10. d;

\Rightarrow Increased $\mathrm{AC}=\frac{106}{100} \times 3=3.18 \mathrm{~cm}$
\Rightarrow Decreased CB $=5-3.18=1.82 \mathrm{~cm}$.
\Rightarrow Decrease $=2-1.82=0.18 \mathrm{~cm}$
\therefore Percentage decrease $=\frac{0.18}{2} \times 100=9 \%$
11.b; Sales tax on the article sold at ` 400 \(=\frac{400 \times 7}{100}={ }^{`} 28\)
Sales tax on the article sold at ` 6400 \(=\frac{6400 \times 9}{100}=` 576\)
Total tax $=28+576=` 604$
Percentage sales tax $=\frac{604}{6800} \times 100$
$=\frac{151}{17}=8 \frac{15}{17} \%$
11. d; Total expenditure except clothing is ` 3600 . \(\Rightarrow 75 \%\) of expenditure \(=` 3600\)
\therefore Total expenditure $=3600\left(\frac{100}{75}\right)=` 4800$
As Ramesh saves 20\%
\Rightarrow His expenditure is 80% of salary
\therefore If $80 \% \equiv$ § 4800
\therefore Savings $=20 \% \equiv{ }^{`} 1200$

Alternative Method:

Suppose salary = ` 100 Savings \(=` 20\)
Expenditure = ` 80 Expenditure on clothing \(=` 20\)

Other expenditure $=` 60$
Now, 60 三 ${ }^{\text {` }} 3600$
$\therefore 20 \equiv{ }^{`} 1200$

Type-III

1. c; Let the number of matches played between India and Pakistan in the first case be x.
\therefore Number of wins by Pakistan $=\frac{60 x}{100}=\frac{3 x}{5}$
Now, according to the question,

$$
\begin{aligned}
& \frac{\frac{3 x}{5}}{x+30}=\frac{30}{100} \\
& \Rightarrow \frac{3 x}{5(x+30)}=\frac{3}{10} \Leftrightarrow \frac{x}{x+30}=\frac{1}{2} \\
& \Rightarrow 2 x=x+30 \Leftrightarrow x=30
\end{aligned}
$$

\therefore Total number of matches $=30+30=60$
2. b; Let 100 pairs of shoes be bought for ${ }^{`} 100$.

New budget $=` 160$
New price $=` 1.20$ pair of shoes
\therefore Number of shoes bought $=\frac{160}{1.2}=\frac{1600}{12}$

$$
=\frac{400}{3}=133 \frac{1}{3}
$$

\therefore Percentage increase $=33 \frac{1}{3} \%$
3. d ; Let the present population of the town be P.

$$
\begin{aligned}
& \Rightarrow \mathrm{P}=x\left(1+\frac{R}{100}\right) \text { and } y=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)=\mathrm{P} \frac{\mathrm{P}}{\mathrm{x}} \\
& \Rightarrow \mathrm{P}^{2}=x y \Leftrightarrow \mathrm{P}=\sqrt{x y}
\end{aligned}
$$

4. c; Number of blood cells in first 6 hours

$$
\begin{aligned}
& =40000\left(1+\frac{10}{100}\right)^{2}\left(1-\frac{10}{100}\right)\left(1+\frac{5}{100}\right)^{2} \\
& =40000 \times \frac{11}{10} \times \frac{11}{10} \times \frac{9}{10} \times \frac{21}{20} \times \frac{21}{20} \\
& =480249=48250
\end{aligned}
$$

5. d; According to the question,

$$
\begin{aligned}
& x+y=\left(x^{2}+y^{2}\right) \times \frac{1}{5} \\
& \text { Again, } x+y=\left(x^{2}-y^{2}\right) \times \frac{1}{4} \\
& \therefore \frac{x^{2}+y^{2}}{5}=\frac{x^{2}-y^{2}}{4} \\
& \Rightarrow 5 x^{2}-5 y^{2}=4 x^{2}+4 y^{2} \\
& \Rightarrow 5 x^{2}-4 x^{2}=5 y^{2}+4 y^{2} \\
& \Rightarrow x^{2}=9 y^{2} \Leftrightarrow x=3 y
\end{aligned}
$$

$$
\therefore \frac{x+y}{x^{2}}=\frac{x^{2}+y^{2}}{5 x^{2}}=\frac{9 y^{2}+y^{2}}{5 \times 9 y^{2}}=\frac{10 y^{2}}{45 y^{2}}=\frac{2}{9}
$$

6.c; Let the population of the town be 100

Population increase $=2.5 \%$
\therefore New population $=102.5$
Now, according to the question,
Population decreases by 0.5%
$=\frac{102.5 \times 0.5}{100}=0.5125$
After one year, population $=102.5-0.5125$
$=101.9875$
\therefore Total increase $\%=(101.9875-100)=1.98 \%$
Reqd. percentage of increase in two years
$=\left(101.98+\frac{101.98 \times 1.98}{100}\right)-100$
$=(101.98+2.019)$
$=103.999-100=3.999 \% \approx 4 \%$
7. c Let the business man's present earning be ` x. Now, according to the question,

$$
\begin{aligned}
& x \times \frac{125}{100} \times \frac{96}{100} \times \frac{125}{100} \times \frac{96}{100} \times \frac{125}{100}=72000 \\
& \Rightarrow x \times \frac{5}{4} \times \frac{24}{25} \times \frac{5}{4} \times \frac{24}{25} \times \frac{5}{4}=72000 \\
& \Rightarrow x \times \frac{9}{5}=72000 \\
& \Rightarrow x \times \frac{72000 \times 5}{9}=` 40000
\end{aligned}
$$

8. c; Let the total number of voters enrolled be x. Number of votes polled $=75 \%$ of x
$=\frac{3 x}{4}$
Number of valid votes
$=\frac{3 x}{4}-\frac{2}{100} \times \frac{3 x}{4}=\frac{3 x}{4}-\frac{3 x}{200}=\frac{147 x}{200}$
Now, according to the question,
75% of $\frac{147 x}{200}=9261$
or, $\frac{3}{4}$ of $\frac{147 x}{200}=9261$
or, $x=\frac{9261 \times 4 \times 200}{3 \times 147}=16800$
9. b; Let the total voters in the list be x.

Votes got by the winner $=\frac{47 x}{100}$
Votes got by the loser $=x-\frac{x}{10}-60-\frac{47 x}{100}$
$=\frac{9 x}{10}-\frac{47 x}{100}-60=\frac{90 x-47 x}{100}-60$
$=\frac{43 x}{100}-60$
Now, according to the question,
$=\frac{47 x}{100}-\frac{43 x}{100}+60=308$
$\Rightarrow \frac{4 x}{100}=308-60=248$
$\Rightarrow x=\frac{248 \times 100}{4}=6200$

